CONTENTS

Contributors xiii
Preface xv

Part 1. Classical Optics

Chapter 1. Adaptive Optics Robert Q. Fugate 1.3

1.1 Glossary / 1.3
1.2 Introduction / 1.4
1.3 The Adaptive Optics Concept / 1.5
1.4 The Nature of Turbulence and Adaptive Optics Requirements / 1.8
1.5 AO Hardware and Software Implementation / 1.23
1.6 How to Design an Adaptive Optical System / 1.40
1.7 References / 1.48

Chapter 2. Nonimaging Optics: Concentration and Illumination William Cassarly 2.1

2.1 Introduction / 2.1
2.2 Basic Calculations / 2.2
2.3 Software Modeling of Nonimaging Systems / 2.6
2.4 Basic Building Blocks / 2.8
2.5 Concentration / 2.12
2.6 Uniformity and Illumination / 2.23
2.7 References / 2.42

Chapter 3. Volume Scattering in Random Media Aristide Dogariu 3.1

3.1 Glossary / 3.1
3.2 Introduction / 3.2
3.3 General Theory of Scattering / 3.3
3.4 Single Scattering / 3.4
3.5 Multiple Scattering / 3.8
3.6 References / 3.16

Chapter 4. Solid-State Cameras Gerald C. Holst 4.1

4.1 Glossary / 4.1
4.2 Introduction / 4.2
4.3 Imaging System Applications / 4.3
4.4 Charge-Coupled Device Array Architecture / 4.3
4.5 Charge Injection Device / 4.6
4.6 Complementary Metal-Oxide Semiconductor / 4.8
Chapter 5. Xerographic Systems Howard Stark 5.1

5.1 Introduction and Overview / 5.1
5.2 Creation of the Latent Image / 5.2
5.3 Development / 5.5
5.4 Transfer / 5.10
5.5 Fusing / 5.10
5.6 Cleaning and Erasing / 5.11
5.7 Control Systems / 5.11
5.8 Color / 5.11
5.9 References / 5.13

Chapter 6. Photographic Materials John D. Baloga 6.1

6.1 Introduction / 6.1
6.2 The Optics of Photographic Films / 6.2
6.3 The Photophysics of Silver Halide Light Detectors / 6.8
6.4 The Stability of Photographic Image Dyes Toward Light Fade / 6.10
6.5 Photographic Spectral Sensitizers / 6.14
6.6 General Characteristics of Photographic Films / 6.19
6.7 References / 6.29

Chapter 7. Radiometry and Photometry: Units and Conversions James M. Palmer 7.1

7.1 Glossary / 7.1
7.2 Introduction and Background / 7.2
7.3 Symbols, Units, and Nomenclature in Radiometry / 7.5
7.4 Symbols, Units, and Nomenclature in Photometry / 7.6
7.5 Conversion of Radiometric Quantities to Photometric Quantities / 7.12
7.6 Conversion of Photometric Quantities to Radiometric Quantities / 7.13
7.7 Radiometric/Photometric Normalization / 7.15
7.8 Other Weighting Functions and Conversions / 7.18
7.9 Bibliography / 7.18
7.10 Further Reading / 7.19

Part 2. Vision Optics

Chapter 8. Update to Part 7 (“Vision”) of Volume I of the Handbook of Optics Theodore E. Cohn 8.1

8.1 Introduction / 8.3
8.2 Bibliography / 8.4
Chapter 9. Biological Waveguides

Vasudevan Lakshminarayanan and Jay M. Enoch

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Glossary</td>
<td>9.1</td>
</tr>
<tr>
<td>9.2 Introduction</td>
<td>9.2</td>
</tr>
<tr>
<td>9.3 Waveguiding in Retinal Photoreceptors and the Stiles-Crawford Effect</td>
<td>9.3</td>
</tr>
<tr>
<td>9.4 Waveguides and Photoreceptors</td>
<td>9.3</td>
</tr>
<tr>
<td>9.5 Photoreceptor Orientation and Alignment</td>
<td>9.5</td>
</tr>
<tr>
<td>9.6 Introduction to the Models and Theoretical Implications</td>
<td>9.7</td>
</tr>
<tr>
<td>9.7 Quantitative Observations of Single Receptors</td>
<td>9.15</td>
</tr>
<tr>
<td>9.8 Waveguide Modal Patterns Found in Monkey/Human Retinal Receptors</td>
<td>9.18</td>
</tr>
<tr>
<td>9.9 Light Guide Effect in Cochlear Hair Cells and Human Hair</td>
<td>9.24</td>
</tr>
<tr>
<td>9.10 Fiber-Optic Plant Tissues</td>
<td>9.26</td>
</tr>
<tr>
<td>9.11 Summary</td>
<td>9.29</td>
</tr>
<tr>
<td>9.12 References</td>
<td>9.29</td>
</tr>
</tbody>
</table>

Chapter 10. Adaptive Optics in Retinal Microscopy and Vision

Donald T. Miller

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Glossary</td>
<td>10.1</td>
</tr>
<tr>
<td>10.2 Introduction</td>
<td>10.2</td>
</tr>
<tr>
<td>10.3 The Mathematics of the Eye’s Aberrations</td>
<td>10.4</td>
</tr>
<tr>
<td>10.4 The Effect of Diffraction and Aberrations</td>
<td>10.4</td>
</tr>
<tr>
<td>10.5 Correcting the Eye’s Aberrations</td>
<td>10.5</td>
</tr>
<tr>
<td>10.6 Retinal Microscopy with Adaptive Optics</td>
<td>10.9</td>
</tr>
<tr>
<td>10.7 Adaptive Optics and Vision</td>
<td>10.9</td>
</tr>
<tr>
<td>10.8 Medical and Scientific Applications</td>
<td>10.12</td>
</tr>
<tr>
<td>10.9 References</td>
<td>10.14</td>
</tr>
</tbody>
</table>

Chapter 11. Assessment of Refraction and Refractive Errors

William F. Long, Ralph Garzia, and Jeffrey L. Weaver

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Glossary</td>
<td>11.1</td>
</tr>
<tr>
<td>11.2 Introduction</td>
<td>11.1</td>
</tr>
<tr>
<td>11.3 Refractive Errors</td>
<td>11.2</td>
</tr>
<tr>
<td>11.4 Assessing Refractive Error</td>
<td>11.3</td>
</tr>
<tr>
<td>11.5 Correcting Refractive Error</td>
<td>11.6</td>
</tr>
<tr>
<td>11.6 Contact Lenses</td>
<td>11.10</td>
</tr>
<tr>
<td>11.7 Cataract, Aphakic, and Pseudophakic Corrections</td>
<td>11.13</td>
</tr>
<tr>
<td>11.8 Aniseikonia and Anisophoria</td>
<td>11.14</td>
</tr>
<tr>
<td>11.9 Refractive Surgery</td>
<td>11.15</td>
</tr>
<tr>
<td>11.10 Myopia Research and Visual Training</td>
<td>11.17</td>
</tr>
<tr>
<td>11.11 References</td>
<td>11.18</td>
</tr>
</tbody>
</table>

Chapter 12. Binocular Vision Factors That Influence Optical Design

Clifton Schor

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Glossary</td>
<td>12.1</td>
</tr>
<tr>
<td>12.2 Combining the Images in the Two Eyes into One Perception of the Visual Field</td>
<td>12.3</td>
</tr>
<tr>
<td>12.3 Distortion of Space by Monocular Magnification</td>
<td>12.13</td>
</tr>
<tr>
<td>12.4 Distortion of Space Perception from Interocular Anisomagnification (Unequal Binocular Magnification)</td>
<td>12.17</td>
</tr>
<tr>
<td>12.5 Distortions of Space from Convergence Responses to Prism</td>
<td>12.20</td>
</tr>
</tbody>
</table>
Chapter 13. Optics and Vision of the Aging Eye

John S. Werner and Brooke E. Schefrin

Glossary

13.1

Introduction

13.2

The Graying of the Planet

13.3

The Senescent Eye and the Optical Image

13.4

Senescent Changes in Vision

13.5

Age-Related Ocular Diseases Affecting Visual Function

13.6

The Aging World from the Optical Point of View

13.7

Conclusions

13.8

References

13.9

Chapter 14. Radiometry and Photometry Review for Vision Optics

Yoshi Ohno

Introduction

14.1

Basis of Physical Photometry

14.2

Photometric Base Unit—The Candela

14.3

Quantities and Units in Photometry and Radiometry

14.4

Principles in Photometry and Radiometry

14.5

Practice in Photometry and Radiometry

14.6

References

14.7

Chapter 15. Ocular Radiation Hazards

David H. Sliney

Glossary

15.1

Introduction

15.2

Injury Mechanisms

15.3

Types of Injury

15.4

Retinal Irradiance Calculations

15.5

Examples

15.6

Exposure Limits

15.7

Discussion

15.8

References

15.9

Chapter 16. Vision Problems at Computers

James E. Sheedy

Introduction

16.1

Work Environment

16.2

Vision and Eye Conditions

16.3

References

16.4
Chapter 17. Human Vision and Electronic Imaging
Bernice E. Rogowitz, Thrasyvoulos N. Pappas, and Jan P. Allebach

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>17.1</td>
</tr>
<tr>
<td>17.2 Early Vision Approaches: The Perception of Imaging Artifacts</td>
<td>17.2</td>
</tr>
<tr>
<td>17.3 Higher-Level Approaches: The Analysis of Image Features</td>
<td>17.3</td>
</tr>
<tr>
<td>17.4 Very High-Level Approaches: The Representation of Aesthetic and Emotional Characteristics</td>
<td>17.9</td>
</tr>
<tr>
<td>17.5 Conclusions</td>
<td>17.11</td>
</tr>
<tr>
<td>17.6 Additional Information on Human Vision and Electronic Imaging</td>
<td>17.12</td>
</tr>
<tr>
<td>17.7 References</td>
<td>17.12</td>
</tr>
</tbody>
</table>

Chapter 18. Visual Factors Associated with Head-Mounted Displays
Brian H. Tsou and Martin Shenker

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Glossary</td>
<td>18.1</td>
</tr>
<tr>
<td>18.2 Introduction</td>
<td>18.1</td>
</tr>
<tr>
<td>18.3 Common Design Considerations Among All HMDs</td>
<td>18.2</td>
</tr>
<tr>
<td>18.4 Characterizing HMD</td>
<td>18.6</td>
</tr>
<tr>
<td>18.5 Summary</td>
<td>18.10</td>
</tr>
<tr>
<td>18.6 Appendix</td>
<td>18.10</td>
</tr>
<tr>
<td>18.7 References</td>
<td>18.13</td>
</tr>
</tbody>
</table>

Part 3. X-Ray and Neutron Optics

SUBPART 3.1. INTRODUCTION

Chapter 19. An Introduction to X-Ray Optics and Neutron Optics
Carolyn A. MacDonald and Walter M. Gibson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 A New Century of X-Ray and Neutron Optics</td>
<td>19.5</td>
</tr>
<tr>
<td>19.2 X-Ray Interaction with Matter</td>
<td>19.6</td>
</tr>
<tr>
<td>19.3 Optics Choices</td>
<td>19.7</td>
</tr>
<tr>
<td>19.4 References</td>
<td>19.10</td>
</tr>
</tbody>
</table>

SUBPART 3.2. REFRACTIVE OPTICS

Chapter 20. Refractive X-Ray Optics
B. Lengeler, C. Schroer, J. Tümmler, B. Benner, A. Snigirev, and I. Snigireva

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>20.3</td>
</tr>
<tr>
<td>20.2 Concept and Manufacture of Parabolic X-Ray Lenses</td>
<td>20.3</td>
</tr>
<tr>
<td>20.3 Generation of a Microfocus by Means of a CRL</td>
<td>20.5</td>
</tr>
<tr>
<td>20.5 Summary and Outlook</td>
<td>20.8</td>
</tr>
<tr>
<td>20.6 References</td>
<td>20.9</td>
</tr>
</tbody>
</table>

SUBPART 3.3. DIFFRACTIVE AND INTERFERENCE OPTICS

Chapter 21. Gratings and Monochromators in the VUV and Soft X-Ray Spectral Region
Malcolm R. Howells

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>21.3</td>
</tr>
<tr>
<td>21.2 Diffraction Properties</td>
<td>21.4</td>
</tr>
</tbody>
</table>
Chapter 22. Crystal Monochromators and Bent Crystals Peter Siddons 22.1

22.1 Crystal Monochromators / 22.1
22.2 Bent Crystals / 22.4
22.3 References / 22.6

Chapter 23. Zone and Phase Plates, Bragg-Fresnel Optics Alan Michette 23.1

23.1 Introduction / 23.1
23.2 Zone Plate Geometry / 23.2
23.3 Amplitude Zone Plates / 23.4
23.4 Phase Zone Plates / 23.5
23.5 Manufacture of Zone Plates / 23.6
23.6 Bragg-Fresnel Optics / 23.7
23.7 References / 23.8

Chapter 24. Multilayers Eberhard Spiller 24.1

24.1 Glossary / 24.1
24.2 Introduction / 24.1
24.3 Calculation of Multilayer Properties / 24.3
24.4 Fabrication Methods and Performance / 24.4
24.5 References / 24.11

Chapter 25. Polarizing Crystal Optics Qun Shen 25.1

25.1 Introduction / 25.1
25.2 Linear Polarizers / 25.2
25.3 Linear Polarization Analyzers / 25.4
25.4 Phase Plates for Circular Polarization / 25.5
25.5 Circular Polarization Analyzers / 25.6
25.6 References / 25.8

SUBPART 3.4. TOTAL REFLECTION OPTICS

Chapter 26. Mirrors for Synchrotron Beamlines Andreas Freund 26.3

26.1 Specific Requirements for Synchrotron X-Ray Optics / 26.3
26.2 Mirror Substrate Quality / 26.4
26.3 Metrology / 26.5
26.4 The Heat Load System / 26.5
26.5 Focusing with Mirrors / 26.6
26.6 References / 26.6
Chapter 32. Synchrotron Radiation Sources
* S. L. Hulbert and G. P. Williams
32.1 Introduction / 32.1
32.2 Theory of Synchrotron Radiation Emission / 32.2
32.3 Conclusion / 32.19
32.4 References / 32.20

Chapter 33. Novel Sources
* Alan Michette
33.1 Introduction / 33.1
33.2 Laser-Generated Plasmas / 33.1
33.3 Pinch Plasmas / 33.3
33.4 Channeling Radiation / 33.3
33.5 Transition Radiation / 33.3
33.6 Parametric Radiation / 33.3
33.7 X-Ray Lasers / 33.4
33.8 Free-Electron Lasers / 33.4
33.9 References / 33.4

SECTION 3.5.2. DETECTORS

Chapter 34. X-Ray Detectors
* Walter M. Gibson
34.1 Introduction / 34.3
34.2 Detector Type / 34.3
34.3 Summary / 34.9
34.4 References / 34.9

SECTION 3.5.3. APPLICATIONS

Chapter 35. Applications Requirements Affecting Optics Selection
* Carolyn A. MacDonald and Walter M. Gibson
35.1 Introduction / 35.3
35.2 Coherence and Flux Requirements / 35.3
35.3 Microscopy / 35.4
35.4 Proximity Lithography / 35.4
35.5 Diffraction / 35.6
35.6 Fluorescence / 35.15
35.7 Medical Applications / 35.24
35.8 References / 35.34

SUBPART 3.6. NEUTRON OPTICS

Chapter 36. Neutron Optics
* David Mildner
36.1 Introduction / 36.3
36.2 Index of Refraction / 36.5
36.3 Refraction and Mirror Reflection / 36.5
36.4 Prisms and Lenses / 36.6
36.5 Neutron Polarization / 36.6
36.6 Neutron Scattering Lengths / 36.7
36.7 Neutron Attenuation / 36.7
36.8 Refractive Index Matching / 36.7
36.9 Neutron Guides / 36.8
SUBPART 3.7. SUMMARY AND APPENDIX

Chapter 37. Summary of X-Ray and Neutron Optics Walter M. Gibson
and Carolyn A. MacDonald 37.3

Appendix. X-Ray Properties of Materials E. M. Gullikson A.1

A.1 Electron Binding Energies, Principal K- and L-Shell Emission Lines,
and Auger Electron Energies / A.3
A.2 References / A.9

Cumulative Index, Volumes I through IV, follows Appendix