Multiple View Geometry in Computer Vision

Richard Hartley
General Electric – Corporate R&D, NY, USA

Andrew Zisserman
University of Oxford, UK
Contents

<table>
<thead>
<tr>
<th>Foreword</th>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

PART 0: The Background: Projective Geometry, Transformations and Estimation

Outline

1 Projective Geometry and Transformations of 2D

1.1 Planar geometry
1.2 The 2D projective plane
1.3 Projective transformations
1.4 A hierarchy of transformations
1.5 The projective geometry of 1D
1.6 Topology of the projective plane
1.7 Recovery of affine and metric properties from images
1.8 More properties of conics
1.9 Fixed points and lines
1.10 Closure

2 Projective Geometry and Transformations of 3D

2.1 Points and projective transformations
2.2 Representing and transforming planes, lines and quadrics
2.3 Twisted cubics
2.4 The hierarchy of transformations
2.5 The plane at infinity
2.6 The absolute conic
2.7 The absolute dual quadric
2.8 Closure

3 Estimation – 2D Projective Transformations

3.1 The Direct Linear Transformation (DLT) algorithm
3.2 Different cost functions
3.3 Statistical cost functions and Maximum Likelihood estimation 86
3.4 Transformation invariance and normalization 88
3.5 Iterative minimization methods 94
3.6 Experimental comparison of the algorithms 99
3.7 Robust estimation 101
3.8 Automatic computation of a homography 107
3.9 Closure 112

4 Algorithm Evaluation and Error Analysis 117
4.1 Bounds on performance 117
4.2 Covariance of the estimated transformation 123
4.3 Monte Carlo estimation of covariance 134
4.4 Closure 136

PART I: Camera Geometry and Single View Geometry 137

Outline 138

5 Camera Models 139
5.1 Finite cameras 139
5.2 The projective camera 144
5.3 Cameras at infinity 153
5.4 Other camera models 161
5.5 Closure 164

6 Computation of the Camera Matrix P 166
6.1 Basic equations 166
6.2 Geometric error 169
6.3 Restricted camera estimation 173
6.4 Radial distortion 178
6.5 Closure 182

7 More Single View Geometry 184
7.1 Action of a projective camera on planes, lines, and conics 185
7.2 Images of smooth surfaces 189
7.3 Action of a projective camera on quadrics 190
7.4 The importance of the camera centre 192
7.5 Camera calibration and the image of the absolute conic 198
7.6 Vanishing points and vanishing lines 205
7.7 Determining the calibration K from vanishing points and lines 209
7.8 Closure 212

PART II: Two-View Geometry 217

Outline 218
Contents

8 **Epipolar Geometry and the Fundamental Matrix** 219

8.1 Epipolar geometry 219

8.2 The fundamental matrix \(F \) 222

8.3 Fundamental matrices arising from special motions 228

8.4 Geometric representation of the fundamental matrix 231

8.5 Retrieving the camera matrices 234

8.6 The essential matrix 238

8.7 Closure 241

9 **3D Reconstruction of Cameras and Structure** 244

9.1 Outline of reconstruction method 244

9.2 Reconstruction ambiguity 246

9.3 The projective reconstruction theorem 248

9.4 Stratified reconstruction 250

9.5 Direct reconstruction – using ground truth 258

9.6 Closure 259

10 **Computation of the Fundamental Matrix \(F \)** 262

10.1 Basic equations 262

10.2 The normalized 8-point algorithm 265

10.3 The algebraic minimization algorithm 266

10.4 Geometric distance 267

10.5 Experimental evaluation of the algorithms 272

10.6 Automatic computation of \(F \) 274

10.7 Special cases of \(F \)-computation 277

10.8 Correspondence of other entities 279

10.9 Degeneracies 279

10.10 A geometric interpretation of \(F \)-computation 282

10.11 The envelope of epipolar lines 283

10.12 Image rectification 289

10.13 Closure 293

11 **Structure Computation** 295

11.1 Problem statement 295

11.2 Linear triangulation methods 297

11.3 Geometric error cost function 299

11.4 Sampson approximation (first-order geometric correction) 300

11.5 An optimal solution 301

11.6 Line reconstruction 306

11.7 Computing vanishing points 309

11.8 Closure 310

12 **Scene planes and homographies** 312

12.1 Homographies given the plane and vice versa 312

12.2 Plane induced homographies given \(F \) and image correspondences 316
12.3 Computing F given the homography induced by a plane 323
12.4 The infinite homography H_{∞} 327
12.5 Closure 328

13 Affine Epipolar Geometry 332
13.1 Affine epipolar geometry 332
13.2 The affine fundamental matrix 333
13.3 Estimating F_A from image point correspondences 336
13.4 Triangulation 342
13.5 Affine reconstruction 342
13.6 Necker reversal and the bas-relief ambiguity 344
13.7 Computing the motion 347
13.8 Closure 350

PART III: Three-View Geometry 353

14 The Trifocal Tensor 355
14.1 The geometric basis for the trifocal tensor 355
14.2 The trifocal tensor and tensor notation 367
14.3 Transfer 371
14.4 Relationship between fundamental matrices and the trifocal tensor 375
14.5 Closure 376

15 Computation of the Trifocal Tensor T 379
15.1 Basic equations 379
15.2 The normalized linear algorithm 381
15.3 The algebraic minimization algorithm 383
15.4 Geometric distance 385
15.5 Experimental evaluation of the algorithms 388
15.6 Automatic computation of T 389
15.7 Special cases of T-computation 393
15.8 Closure 395

PART IV: N-View Geometry 397

16 N-Linearities and Multiple View Tensors 399
16.1 Bilinear relations 399
16.2 Trilinear relations 402
16.3 Quadrilinear relations 407
16.4 Intersections of four planes 410
16.5 Counting arguments 411
16.6 Number of independent equations 417
16.7 Choosing equations 420
16.8 Closure 421

17 N-View Computational Methods 423
 17.1 Projective reconstruction – bundle adjustment 423
 17.2 Affine reconstruction – the factorization algorithm 425
 17.3 Projective factorization 429
 17.4 Reconstruction knowing homographies induced by a plane 432
 17.5 Reconstruction from sequences 435
 17.6 Closure 440

18 Auto-Calibration 441
 18.1 Introduction 441
 18.2 Algebraic framework and problem statement 443
 18.3 Calibration using the absolute dual quadric 445
 18.4 The Kruppa equations 454
 18.5 A stratified solution 457
 18.6 Calibration from rotating cameras 466
 18.7 Auto-calibration from planes 469
 18.8 Planar motion 471
 18.9 Auto-calibration of a stereo rig 475
 18.10 Closure 479

19 Duality 483
 19.1 Carlsson–Weinshall duality 483
 19.2 Reduced reconstruction 490
 19.3 Closure 495

20 Cheirality 497
 20.1 Quasi-affine transformations 497
 20.2 Front and back of a camera 501
 20.3 Three-dimensional point sets 501
 20.4 Obtaining a quasi-affine reconstruction 503
 20.5 Effect of transformations on cheirality 503
 20.6 Orientation 505
 20.7 The cheiral inequalities 508
 20.8 Which points are visible in a third view 511
 20.9 Which points are in front of which 513
 20.10 Closure 515

21 Degenerate Configurations 516
 21.1 Camera resectioning 516
 21.2 Degeneracies in two views 523
 21.3 Carlsson–Weinshall duality 530
 21.4 Three-view critical configurations 538
 21.5 Ambiguous views of seven points 542
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1 Tensor Notation</td>
<td>545</td>
</tr>
<tr>
<td>Appendix 2 Gaussian (Normal) and Chi-squared Distributions</td>
<td>548</td>
</tr>
<tr>
<td>Appendix 3 Numerical Algorithms</td>
<td>551</td>
</tr>
<tr>
<td>Appendix 4 Iterative Estimation Methods</td>
<td>568</td>
</tr>
<tr>
<td>Appendix 5 Some Special Plane Projective Transformations</td>
<td>583</td>
</tr>
<tr>
<td>Bibliography</td>
<td>589</td>
</tr>
<tr>
<td>Index</td>
<td>600</td>
</tr>
</tbody>
</table>