Microstrip Filters for RF/Microwave Applications

JIA-SHEN G. HONG
M. J. LANCASTER

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS, INC.
NEW YORK / CHICHESTER / WEINHEIM / BRISBANE / SINGAPORE / TORONTO
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2. Network Analysis</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2.1 Network Variables</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2.2 Scattering Parameters</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2.3 Short-Circuit Admittance Parameters</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.4 Open-Circuit Impedance Parameters</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>2.5 ABCD Parameters</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.6 Transmission Line Networks</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2.7 Network Connections</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>2.8 Network Parameter Conversions</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2.9 Symmetrical Network Analysis</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>2.10 Multi-Port Networks</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>2.11 Equivalent and Dual Networks</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>2.12 Multi-Mode Networks</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3. Basic Concepts and Theories of Filters</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>3.1 Transfer Functions</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>3.1.1 General Definitions</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>3.1.2 The Poles and Zeros on the Complex Plane</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3.1.3 Butterworth (Maximally Flat) Response</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>3.1.4 Chebyshev Response</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3.1.5 Elliptic Function Response</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>3.1.6 Gaussian (Maximally Flat Group-Delay) Response</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>
3.1.7 All-Pass Response 37

3.2 Lowpass Prototype Filters and Elements 38
 3.2.1 Butterworth Lowpass Prototype Filters 41
 3.2.2 Chebyshev Lowpass Prototype Filters 41
 3.2.3 Elliptic Function Lowpass Prototype Filters 44
 3.2.4 Gaussian Lowpass Prototype Filters 46
 3.2.5 All-Pass Lowpass Prototype Filters 47

3.3 Frequency and Element Transformations 48
 3.3.1 Lowpass Transformation 49
 3.3.2 Highpass Transformation 51
 3.3.3 Bandpass Transformation 51
 3.3.4 Bandstop Transformation 53

3.4 Immittance Inverters 54
 3.4.1 Definition of Immittance, Impedance and Admittance Inverters 54
 3.4.2 Filters with Immittance Inverters 56
 3.4.3 Practical Realization of Immittance Inverters 60

3.5 Richards’ Transformation and Kuroda Identities 61
 3.5.1 Richards’ Transformation 61
 3.5.2 Kuroda Identities 66
 3.5.3 Coupled-Line Equivalent Circuits 66

3.6 Dissipation and Unloaded Quality Factor 69
 3.6.1 Unloaded Quality Factors of Lossy Reactive Elements 70
 3.6.2 Dissipation Effects on Lowpass and Highpass Filters 71
 3.6.3 Dissipation Effects on Bandpass and Bandstop Filters 73

References 75

4. Transmission Lines and Components 77

4.1 Microstrip Lines 77
 4.1.1 Microstrip Structure 77
 4.1.2 Waves in Microstrip 77
 4.1.3 Quasi-TEM Approximation 78
 4.1.4 Effective Dielectric Constant and Characteristic Impedance 78
 4.1.5 Guided Wavelength, Propagation Constant, Phase Velocity, and Electrical Length 80
 4.1.6 Synthesis of W/h 80
 4.1.7 Effect of Strip Thickness 81
 4.1.8 Dispersion in Microstrip 82
 4.1.9 Microstrip Losses 83
 4.1.10 Effect of Enclosure 84
 4.1.11 Surface Waves and Higher-Order Modes 84

4.2 Coupled Lines 84
 4.2.1 Even- and Odd-Mode Capacitances 85
 4.2.2 Even- and Odd-Mode Characteristic Impedances and Effective Dielectric Constants 87
 4.2.3 More Accurate Design Equations 87
4.3 Discontinuities and Components
 4.3.1 Microstrip Discontinuities 89
 4.3.2 Microstrip Components 93
 4.3.3 Loss Considerations for Microstrip Resonators 102
4.4 Other Types of Microstrip Lines 104
References 106

5. Lowpass and Bandpass Filters 109
 5.1 Lowpass Filters 109
 5.1.1 Stepped-Impedance L-C Ladder Type Lowpass Filters 109
 5.1.2 L-C Ladder Type of Lowpass Filters using Open-Circuited Stubs 112
 5.1.3 Semilumped Lowpass Filters Having Finite-Frequency
 Attenuation Poles 116
 5.2 Bandpass Filters 121
 5.2.1 End-Coupled, Half-Wavelength Resonator Filters 121
 5.2.2 Parallel-Coupled, Half-Wavelength Resonator Filters 127
 5.2.3 Hairpin-Line Bandpass Filters 129
 5.2.4 Interdigital Bandpass Filters 133
 5.2.5 Combline Filters 142
 5.2.6 Pseudocombline Filters 148
 5.2.7 Stub Bandpass Filters 151
References 158

6. Highpass and Bandstop Filters 161
 6.1 Highpass Filters 161
 6.1.1 Quasilumped Highpass Filters 161
 6.1.2 Optimum Distributed Highpass Filters 165
 6.2 Bandstop Filters 168
 6.2.1 Narrow-Band Bandstop Filters 168
 6.2.2 Bandstop Filters with Open-Circuited Stubs 176
 6.2.3 Optimum Bandstop Filters 182
 6.2.4 Bandstop Filters for RF Chokes 188
References 190

7. Advanced Materials and Technologies 191
 7.1 Superconducting Filters 191
 7.1.1 Superconducting Materials 191
 7.1.2 Complex Conductivity of Superconductors 192
 7.1.3 Penetration Depth of Superconductors 193
 7.1.4 Surface Impedance of Superconductors 194
 7.1.5 Nonlinearity of Superconductors 197
 7.1.6 Substrates for Superconductors 199
 7.1.7 HTS Microstrip Filters 200
 7.1.8 High-Power HTS Filters 201
 7.2 Ferroelectric Tunable Filters 204
8. Coupled Resonator Circuits 235

8.1 General Coupling Matrix for Coupled-Resonator Filters 236

8.1.1 Loop Equation Formulation 236

8.1.2 Node Equation Formulation 240

8.1.3 General Coupling Matrix 243

8.2 General Theory of Couplings 244

8.2.1 Synchronously Tuned Coupled-Resonator Circuits 245

8.2.2 Asynchronously Tuned Coupled-Resonator Circuits 251

8.3 General Formulation for Extracting Coupling Coefficient k 257

8.4 Formulation for Extracting External Quality Factor Q_e 258

8.4.1 Singly Loaded Resonator 259

8.4.2 Doubly Loaded Resonator 262

8.5 Numerical Examples 264

8.5.1 Extracting k (Synchronous Tuning) 265

8.5.2 Extracting k (Asynchronous Tuning) 267

8.5.3 Extracting Q_e 270

References 271

9. CAD for Low-Cost and High-Volume Production 273

9.1 Computer-Aided Design Tools 274

9.2 Computer-Aided Analysis 274

9.2.1 Circuit Analysis 274

9.2.2 Electromagnetic Simulation 279

9.2.3 Artificial Neural Network Modeling 283
9.3 Optimization
 9.3.1 Basic Concepts 285
 9.3.2 Objective Functions for Filter Optimization 286
 9.3.3 One-Dimensional Optimization 288
 9.3.4 Gradient Methods for Optimization 288
 9.3.5 Direct Search Optimization 291
 9.3.6 Optimization Strategies Involving EM Simulations 295

9.4 Filter Synthesis by Optimization 299
 9.4.1 General Description 299
 9.4.2 Synthesis of a Quasielliptic Function Filter by Optimization 299
 9.4.3 Synthesis of an Asynchronously Tuned Filter by Optimization 300
 9.4.4 Synthesis of a UMTS Filter by Optimization 302

9.5 CAD Examples 306

References 312

10. Advanced RF/Microwave Filters 315
 10.1 Selective Filters with a Single Pair of Transmission Zeros 315
 10.1.1 Filter Characteristics 315
 10.1.2 Filter Synthesis 317
 10.1.3 Filter Analysis 320
 10.1.4 Microstrip Filter Realization 321
 10.2 Cascaded Quadruplet (CQ) Filters 325
 10.2.1 Microstrip CQ Filters 326
 10.2.2 Design Example 326
 10.3 Trisection and Cascaded Trisection (CT) Filters 328
 10.3.1 Characteristics of CT Filters 328
 10.3.2 Trisection Filters 331
 10.3.3 Microstrip Trisection Filters 335
 10.3.4 Microstrip CT Filters 340
 10.4 Advanced Filters with Transmission Line Inserted Inverters 341
 10.4.1 Characteristics of Transmission Line Inserted Inverters 341
 10.4.2 Filtering Characteristics with Transmission Line Inserted Inverters 344
 10.4.3 General Transmission Line Filter 348
 10.5 Linear Phase Filters 350
 10.5.1 Prototype of Linear Phase Filter 350
 10.5.2 Microstrip Linear Phase Bandpass Filters 355
 10.6 Extract Pole Filters 359
 10.6.1 Extracted Pole Synthesis Procedure 360
 10.6.2 Synthesis Example 366
 10.6.3 Microstrip Extracted Pole Bandpass Filters 368
 10.7 Canonical Filters 371
 10.7.1 General Coupling Structure 371
 10.7.2 Elliptic Function/Selective Linear Phase Canonical Filters 373

References 375