VOLUME 2A

MODERN ELECTROCHEMISTRY

SECOND EDITION

Fundamentals of Electrodes

John O’M Bockris
Molecular Green Technology
College Station, Texas

Amulya K. N. Reddy
President
International Energy Initiative
Bangalore, India

and

Maria Gamboa-Aldeco
Texas A&M University
College Station, Texas

Kluwer Academic/Plenum Publishers
New York, Boston, Dordrecht, London, Moscow
CHAPTER 6

THE ELECTRIFIED INTERFACE

6.1. Electrification of an Interface

6.1.1. The Electrode/Electrolyte Interface: The Basis of Electrodics

6.1.2. New Forces at the Boundary of an Electrolyte

6.1.3. The Interphase Region Has New Properties and New Structures

6.1.4. An Electrode Is Like a Giant Central Ion

6.1.5. The Consequences of Compromise Arrangements: The Electrolyte Side of the Boundary Acquires a Charge

6.1.6. Both Sides of the Interface Become Electrified: The Electrical Double Layer

6.1.7. Double Layers Are Characteristic of All Phase Boundaries

6.1.8. What Knowledge Is Required before an Electrified Interface Can Be Regarded as Understood?

6.1.9. Predicting the Interphase Properties from the Bulk Properties of the Phases

6.1.10. Why Bother about Electrified Interfaces?

6.2. Experimental Techniques Used in Studying Interfaces

6.2.1. What Type of Information Is Necessary to Gain an Understanding of Interfaces?

6.2.2. The Importance of Working with Clean Surfaces (and Systems)

6.2.3. Why Use Single Crystals?

6.2.4. In Situ vs. Ex Situ Techniques

6.2.5. Ex Situ Techniques

6.2.5.1. Low-Energy Electron Diffraction (LEED)

6.2.5.2. X-Ray Photoelectron Spectroscopy (XPS)
6.2.6. In Situ Techniques .. 797
 6.2.6.1. Infrared-Reflection Spectroscopy 797
 6.2.6.2. Radiochemical Methods 804

6.3. The Potential Difference Across Electrified Interfaces 806
 6.3.1. What Happens When One Tries to Measure the Potential Difference
 Across a Single Electrode/Electrolyte Interface? 806
 6.3.2. Can One Measure Changes in the Metal–Solution Potential Difference? 811
 6.3.3. The Extreme Cases of Ideally Nonpolarizable and Polarizable Interfaces 813
 6.3.4. The Development of a Scale of Relative Potential Differences 815
 6.3.5. Can One Meaningfully Analyze an Electrode–Electrolyte Potential
 Difference? .. 817
 6.3.6. The Outer Potential ψ of a Material Phase in a Vacuum 821
 6.3.7. The Outer Potential Difference, $M^S \Delta \psi$, between the Metal and the Solution 822
 6.3.8. The Surface Potential, χ, of a Material Phase in a Vacuum 823
 6.3.9. The Dipole Potential Difference $M^S \Delta \chi$ across an Electrode–Electrolyte
 Interface ... 824
 6.3.10. The Sum of the Potential Differences Due to Charges and
 Dipoles: The Inner Potential Difference, $M^S \Delta \phi$ 826
 6.3.11. The Outer, Surface, and Inner Potential Differences 828
 6.3.12. Is the Inner Potential Difference an Absolute Potential
 Difference? .. 829
 6.3.13. The Electrochemical Potential, the Total Work from Infinity to
 Bulk .. 830
 6.3.13.1. Definition of Electrochemical Potential 830
 6.3.13.2. Can the Chemical and Electrical Work Be Determined
 Separately? .. 832
 6.3.13.3. A Criterion of Thermodynamic Equilibrium between Two
 Phases: Equality of Electrochemical Potentials 833
 6.3.13.4. Nonpolarizable Interfaces and Thermodynamic Equilibrium. 834
 6.3.14. The Electron Work Function, Another Interfacial Potential 834
 6.3.15. The Absolute Electrode Potential 837
 6.3.15.1. Definition of Absolute Electrode Potential 837
 6.3.15.2. Is It Possible to Measure the Absolute Potential? 839
 Further Reading .. 841

6.4. The Accumulation and Depletion of Substances at an Interface 842
 6.4.1. What Would Represent Complete Structural Information on an Electrified
 Interface? .. 842
 6.4.2. The Concept of Surface Excess 843
 6.4.3. Is the Surface Excess Equivalent to the Amount Adsorbed? 845
 6.4.4. Does Knowledge of the Surface Excess Contribute to Knowledge of the
 Distribution of Species in the Interphase Region? 846
 6.4.5. Is the Surface Excess Measurable? 847

6.5. The Thermodynamics of Electrified Interfaces 848
6.5.1. The Measurement of Interfacial Tension as a Function of the Potential Difference across the Interface ... 848
6.5.1.1. Surface Tension between a Liquid Metal and Solution 848
6.5.1.2. Is It Possible to Measure Surface Tension of Solid Metal and Solution Interfaces? ... 849
6.5.2. Some Basic Facts about Electrocapillary Curves 852
6.5.3. Some Thermodynamic Thoughts on Electrified Interfaces 854
6.5.4. Interfacial Tension Varies with Applied Potential: Determination of the Charge Density on the Electrode 858
6.5.5. Electrode Charge Varies with Applied Potential: Determination of the Electrical Capacitance of the Interface 859
6.5.6. The Potential at which an Electrode Has a Zero Charge 861
6.5.7. Surface Tension Varies with Solution Composition: Determination of the Surface Excess .. 862
6.5.8. Summary of Electrocapillary Thermodynamics 866
6.5.9. Retrospect and Prospect for the Study of Electrified Interfaces 869
Further Reading ... 870
6.6. The Structure of Electrified Interfaces 871
6.6.1. A Look into an Electrified Interface 871
6.6.2. The Parallel-Plate Condenser Model: The Helmholtz–Perrin Theory .. 873
6.6.3. The Double Layer in Trouble: Neither Perfect Parabolas nor Constant Capacities ... 876
6.6.4. The Ionic Cloud: The Gouy–Chapman Diffuse-Charge Model of the Double Layer .. 876
6.6.5. The Gouy–Chapman Model Provides a Potential Dependence of the Capacitance, but at What Cost? ... 880
6.6.6. Some Ions Stuck to the Electrode, Others Scattered in Thermal Disarray: The Stern Model ... 882
6.6.7. The Contribution of the Metal to the Double-Layer Structure 887
6.6.8. The Jellium Model of the Metal ... 890
Further Reading ... 894
6.7. Structure at the Interface of the Most Common Solvent: Water 895
6.7.1. An Electrode Is Largely Covered with Adsorbed Water Molecules .. 895
6.7.2. Metal–Water Interactions .. 896
6.7.3. One Effect of the Oriented Water Molecules in the Electrode Field: Variation of the Interfacial Dielectric Constant 897
6.7.4. Orientation of Water Molecules on Electrodes: The Three-State Water Model ... 898
6.7.5. How Does the Population of Water Species Vary with the Potential of the Electrode? .. 900
6.7.6. The Surface Potential, g_{dipole}^S, Due to Water Dipoles 904
6.7.7. The Contribution of Adsorbed Water Dipoles to the Capacity of the Interface ... 910
6.7.8. Solvent Excess Entropy of the Interface: A Key to Obtaining Structural Information on Interfacial Water Molecules .. 912
6.7.9. If Not Solvent Molecules, What Factors Are Responsible for Variation in the Differential Capacity of the Electrified Interface with Potential? .. 915
Further Reading .. 918

6.8.1. Ionic Adsorption ... 919
6.8.2. What Parameters Determine if an Ion Is Able to Contact Adsorb on an Electrode? ... 920
6.8.2.1. Ion–Electrode Interactions. ... 920
6.8.2.2. Solvent Interactions. ... 923
6.8.2.3. Lateral Interactions. .. 924
6.8.3. The Enthalpy and Entropy of Adsorption .. 926
6.8.4. Effect of the Electrical Field at the Interface on the Shape of the Adsorbed Ion ... 929
6.8.5. Equation of States in Two Dimensions .. 931
6.8.6. Isotherms of Adsorption in Electrochemical Systems 933
6.8.7. A Word about Standard States in Adsorption Isotherms 936
6.8.8. The Langmuir Isotherm: A Fundamental Isotherm ... 937
6.8.9. The Frumkin Isotherm: A Lateral Interaction Isotherm 938
6.8.10. The Temkin Isotherm: A Heterogeneous Surface Isotherm 938
6.8.11. The Flory–Huggins-Type Isotherm: A Substitutional Isotherm 941
6.8.13. An Ionic Isotherm for Heterogeneous Surfaces ... 944
6.8.15. Contact Adsorption: Its Influence on the Capacity of the Interface 959
6.8.15.1. The Constant-Capacity Region. .. 961
6.8.15.2. The Capacitance Hump and the Capacity Minimum. 962
6.8.16. Looking Back .. 963
Further Reading ... 967

6.9.1. The Relevance of Organic Adsorption ... 968
6.9.2. Is Adsorption the Only Process that the Organic Molecules Can Undergo? 969
6.9.3. Identifying Organic Adsorption ... 970
6.9.3.1. Test 1: The Almost-Null Current. .. 970
6.9.3.2. Test 2: The Parabolic Coverage-Potential Curve. ... 970
6.9.3.3. Test 3: The Maximum of the Coverage–Potential Curve Lies Close to the pzc. 971
6.9.4. Forces Involved in Organic Adsorption ... 971
6.9.5. The Parabolic Coverage–Potential Curve .. 972
6.9.6. Other Factors Influencing the Adsorption of Organic Molecules on Electrodes ... 978
CONTENTS

6.9.6.2. Electrode Properties .. 979
6.9.6.3. Electrolyte Properties 981

6.10. The Structure of Other Interfaces 984

6.10.1. The Structure of the Semiconductor–Electrolyte Interface .. 984
6.10.1.1. How Is the Charge Distributed inside a Solid Electrode? 984
6.10.1.2. The Band Theory of Crystalline Solids 985
6.10.1.3. Conductors, Insulators, and Semiconductors 988
6.10.1.4. Some Analogies between Semiconductors and Electrolytic Solutions 990
6.10.1.5. The Diffuse-Charge Region Inside an Intrinsic Semiconductor: The Garett–Brattain Space Charge 992
6.10.1.6. The Differential Capacity Due to the Space Charge .. 995
6.10.1.7. Impurity Semiconductors, n-Type and p-Type 997
6.10.1.8. Surface States: The Semiconductor Analogue of Contact Adsorption 1000

6.10.2. Colloid Chemistry .. 1001
6.10.2.1. Colloids: The Thickness of the Double Layer and the Bulk Dimensions Are of the Same Order .. 1001
6.10.2.2. The Interaction of Double Layers and the Stability of Colloids .. 1002
6.10.2.3. Sols and Gels .. 1005

6.11. Double Layers Between Phases Moving Relative to Each Other .. 1006

6.11.1. The Phenomenology of Mobile Electrified Interfaces: Electrokinetic Properties 1006
6.11.2. The Relative Motion of One of the Phases Constituting an Electrified Interface Produces a Streaming Current 1008
6.11.3. A Potential Difference Applied Parallel to an Electrified Interface Produces an Electro-osmotic Motion of One of the Phases Relative to the Other .. 1011
6.11.4. Electrophoresis: Moving Solid Particles in a Stationary Electrolyte .. 1012

Further Reading .. 1015
Exercises .. 1015
Problems .. 1020
Micro Research Problems ... 1030
Appendix 6.1 ... 1031

CHAPTER 7

ELECTRODICS

7.1. Introduction .. 1035
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.2.</td>
<td>Some Things One Has to Know About Interfacial Electron Transfer:</td>
<td>1035</td>
</tr>
<tr>
<td></td>
<td>It’s Both Electrical and Chemical</td>
<td></td>
</tr>
<tr>
<td>7.1.3.</td>
<td>Uni-electrodes, Pairs of Electrodes in Cells and Devices</td>
<td>1036</td>
</tr>
<tr>
<td>7.1.3.</td>
<td>The Three Possible Electrochemical Devices</td>
<td>1036</td>
</tr>
<tr>
<td></td>
<td>7.1.3.1. The Driven Cell (or Substance Producer).</td>
<td>1036</td>
</tr>
<tr>
<td></td>
<td>7.1.3.2. The Fuel Cell (or Electricity Producer).</td>
<td>1039</td>
</tr>
<tr>
<td></td>
<td>7.1.3.3. The Electrochemical Undevice: An Electrode that</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>Consumes Itself while Wasting Energy</td>
<td></td>
</tr>
<tr>
<td>7.1.4.</td>
<td>Some Special Characteristics of Electrochemical Reactions</td>
<td>1041</td>
</tr>
<tr>
<td>7.2.</td>
<td>Electron Transfer Under an Interfacial Electric Field</td>
<td>1042</td>
</tr>
<tr>
<td>7.2.1.</td>
<td>A Two-Way Traffic Across the Interface: Equilibrium and the Exchange</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td>Current Density</td>
<td></td>
</tr>
<tr>
<td>7.2.2.</td>
<td>The Interface Out of Equilibrium</td>
<td>1049</td>
</tr>
<tr>
<td>7.2.3.</td>
<td>A Quantitative Version of the Dependence of the Electrochemical</td>
<td>1052</td>
</tr>
<tr>
<td></td>
<td>Reaction Rate on Overpotential: The Butler–Volmer Equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2.3.1. The Low Overpotential Case.</td>
<td>1054</td>
</tr>
<tr>
<td></td>
<td>7.2.3.2. The High Overpotential Case.</td>
<td>1054</td>
</tr>
<tr>
<td>7.2.4.</td>
<td>Polarizable and Nonpolarizable Interfaces</td>
<td>1055</td>
</tr>
<tr>
<td>7.2.5.</td>
<td>The Equilibrium State for Charge Transfer at the Metal/Solution Interface</td>
<td>1057</td>
</tr>
<tr>
<td></td>
<td>Treated Thermodynamically</td>
<td></td>
</tr>
<tr>
<td>7.2.6.</td>
<td>The Equilibrium Condition: Kinetic Treatment</td>
<td>1058</td>
</tr>
<tr>
<td>7.2.7.</td>
<td>The Equilibrium Condition: Nernst’s Thermodynamic Treatment</td>
<td>1058</td>
</tr>
<tr>
<td>7.2.8.</td>
<td>The Final Nernst Equation and the Question of Signs</td>
<td>1062</td>
</tr>
<tr>
<td>7.2.10.</td>
<td>Looking Back to Look Forward</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>1067</td>
</tr>
<tr>
<td>7.3.</td>
<td>A More Detailed Look at Some Quantities in the Butler–Volmer Equation</td>
<td>1067</td>
</tr>
<tr>
<td>7.3.1.</td>
<td>Does the Structure of the Interphasial Region Influence the Electrochemical Kinetics There?</td>
<td>1068</td>
</tr>
<tr>
<td>7.3.2.</td>
<td>What About the Theory of the Symmetry Factor, ß?</td>
<td>1071</td>
</tr>
<tr>
<td>7.3.3.</td>
<td>The Interfacial Concentrations May Depend on Ionic Transport in the Electrolyte</td>
<td>1072</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>1073</td>
</tr>
<tr>
<td>7.4.</td>
<td>Electrode Kinetics Involving the Semiconductor/solution Interface</td>
<td>1074</td>
</tr>
<tr>
<td>7.4.1.</td>
<td>Introduction</td>
<td>1074</td>
</tr>
<tr>
<td></td>
<td>7.4.1.1. General</td>
<td>1074</td>
</tr>
<tr>
<td></td>
<td>7.4.1.2. The n-p Junction</td>
<td>1075</td>
</tr>
<tr>
<td>7.4.2.</td>
<td>The Current-Potential Relation at a Semiconductor/Electrolyte Interface</td>
<td>1082</td>
</tr>
<tr>
<td></td>
<td>(Negligible Surface States)</td>
<td></td>
</tr>
<tr>
<td>7.4.3.</td>
<td>Effect of Surface States on Semiconductor Electrode Kinetics</td>
<td>1086</td>
</tr>
<tr>
<td>7.4.4.</td>
<td>The Use of n- and p-Semiconductors for Thermal Reactions</td>
<td>1086</td>
</tr>
<tr>
<td>7.4.5.</td>
<td>The Limiting Current in Semiconductor Electrodes</td>
<td>1088</td>
</tr>
<tr>
<td>7.4.6.</td>
<td>Photoactivity of Semiconductor Electrodes</td>
<td>1089</td>
</tr>
</tbody>
</table>
Further Reading ... 1090

7.5. Techniques of Electrode Kinetics 1091

7.5.1. Preparing the Solution 1091
7.5.2. Preparing the Electrode Surface 1094
7.5.3. Real Area .. 1095
7.5.4. Microelectrodes 1097
 7.5.4.1. The Situation. 1097
 7.5.4.2. Lessening Diffusion Control by the Use of a Microelectrode 1098
 7.5.4.3. Reducing Ohmic Errors by the Use of Microelectrodes 1099
 7.5.4.4. The Downside of Using Microelectrodes 1100
 7.5.4.5. Arrays ... 1100
 7.5.4.6. The Far-Ranging Applications of Microelectrodes 1102

7.5.5. Thin-Layer Cells 1103

7.5.6. Which Electrode System Is Best? 1103

7.5.7. The Measurement Cell 1104
 7.5.7.1. General Arrangement 1104
 7.5.7.2. More on Luggin Capillaries and Tips 1107
 7.5.7.3. Reference Electrodes 1108

7.5.8. Keeping the Current Uniform on an Electrode 1111

7.5.9. Apparatus Design Arising from the Needs of the Electronic Instrumentation 1112
Further Reading ... 1113

7.5.10. Measuring the Electrochemical Reaction Rate as a Function of Potential (at Constant Concentration and Temperature) 1115
 7.5.10.1. Temperature Control in Electrochemical Kinetics 1121

7.5.11. The Dependence of Electrochemical Reaction Rates on Temperature .. 1122

7.5.12. Electrochemical Reaction Rates as a Function of the System Pressure ... 1123
 7.5.12.1. The Equations 1123
 7.5.12.2. What Is the Point of Measuring System Pressure Effects? 1125

7.5.13. Impedance Spectroscopy 1127
 7.5.13.2. Real and Imaginary Impedance 1128
 7.5.13.3. The Impedance of a Capacitor in Series with a Resistor 1129
 7.5.13.4. Applying ac Impedance Methods to Obtain Information on Electrode Processes 1131
 7.5.13.5. The Warburg Impedance 1133
 7.5.13.6. The Simplest “Real” Electrochemical Interface 1133
 7.5.13.7. The Impedance (or Cole–Cole) Plot 1135
 7.5.13.8. Calculating Exchange Current Densities and Rate Constants from Impedance Plots 1136
 7.5.13.9. Impedance Spectroscopy for More Complex Interfacial Situations .. 1136
 7.5.13.10. Cases in which Impedance Spectroscopy Becomes Limited 1138

7.5.14. Rotating Disk Electrode 1139
7.5.14.1. General .. 1139
7.5.14.2. Are Rotating Disk with Ring Electrodes Still Useful in the Twenty-first Century 1143
7.5.14.3. Other Unusual Electrode Shapes .. 1144
7.5.15. Spectroscopic Approaches to Electrode Kinetics 1145
7.5.15.1. General .. 1145
7.5.15.2. FTIR Spectroscopy and Mechanisms on Electrode 1147
7.5.16. Ellipsometry .. 1147
7.5.16.1. What Is Ellipsometry? 1147
7.5.16.2. Is Ellipsometry Any Use in Electrochemistry? 1148
7.5.16.3. Some Understanding as to How Ellipsometry Works 1149
7.5.16.4. Ellipsometric Spectroscopy 1152
7.5.16.5. How Can Ellipsometry Be So Sensitive? 1153
7.5.16.6. Does Ellipsometry Have a Downside? 1154
7.5.17. Isotopic Effects ... 1154
7.5.17.1. Use of Isotopic Effects in the Determination of Electro-Org anic Reaction Mechanisms 1156
7.5.18. Atomic-Scale In Situ Microscopy 1157
7.5.19. Use of Computers in Electrochemistry 1159
7.5.19.1. Computational ... 1159
7.5.19.2. Computer Simulation .. 1160
7.5.19.3. Use of Computer Simulation to Solve Differential Equations Pertaining to Diffusion Problems 1162
7.5.19.4. Use of Computers to Control Experiments: Robotization of Suitable Experiments 1162
7.5.19.5. Pattern Recognition Analysis 1162
Further Reading .. 1164
7.6. Multistep Reactions ... 1166
7.6.1. The Difference between Single-Step and Multistep Electrode Reactions .. 1166
7.6.2. Terminology in Multistep Reactions 1167
7.6.3. The Catalytic Pathway ... 1167
7.6.4. The Electrochemical Desorption Pathway 1168
7.6.5. Rate-Determining Steps in the Cathodic Hydrogen Evolution Reaction ... 1168
7.6.6. Some Ideas on Queues, or Waiting Lines 1169
7.6.7. The Overpotential \(\eta \) Is Related to the Electron Queue at an Interface .. 1171
7.6.8. A Near-Equilibrium Relation between the Current Density and Overpotential for a Multistep Reaction 1172
7.6.9. The Concept of a Rate-Determining Step 1175
7.6.10. Rate-Determining Steps and Energy Barriers for Multistep Reactions .. 1180
7.6.11. How Many Times Must the Rate-Determining Step Take Place for the Overall Reaction to Occur Once? The Stoichiometric Number \(\nu \) .. 1182
7.6.12. The Order of an Electrode Reaction 1187
7.6.13. Blockage of the Electrode Surface during Charge Transfer: The Surface-Coverage Factor 1190
7.7. The Intermediate Radical Concentration, θ and Its Effect on Electrode Kinetics ... 1193
 7.7.1. Heat of Adsorption Independent of Coverage 1193
 7.7.2. Heat of Adsorption Dependent on Coverage 1194
 7.7.3. Frumkin and Temkin .. 1195
 7.7.4. Consequences from the Frumkin–Temkin Isotherm 1195
 7.7.5. When Should One Use the Frumkin–Temkin Isotherms in Kinetics Rather than the Simple Langmuir Approach? 1197
 7.7.6. Are the Electrode Kinetics Affected in Circumstances under which ΔGθ Varies with θ? ... 1197

Further Reading ... 1201

7.8. The Reactivity of Crystal Planes of Differing Orientation ... 1201
 7.8.1. Introduction .. 1201
 7.8.2. Single Crystals and Planes of Specific Orientation 1201
 7.8.3. Another Preliminary: The Voltammogram as the Arbiter of a Clean Surface ... 1203
 7.8.4. Examples of the Different Degrees of Reactivity Caused by Exposing Different Planes of Metal Single Crystals to the Solution 1205
 7.8.5. General Assessment of Single-Crystal Work in Electrochemistry ... 1209
 7.8.6. Roots of the Work on Kinetics at Single-Crystal Planes 1210

Further Reading ... 1210

7.9. Transport in the Electrolyte Effects Charge Transfer at the Interface ... 1211
 7.9.1. Ionics Looks after the Material Needs of the Interface 1211
 7.9.2. How the Transport Flux Is Linked to the Charge-Transfer Flux: The Flux-Equality Condition .. 1213
 7.9.3. Appropriations from the Theory of Heat Transfer 1215
 7.9.4. A Qualitative Study of How Diffusion Affects the Response of an Interface to a Constant Current 1216
 7.9.5. A Quantitative Treatment of How Diffusion to an Electrode Affects the Response with Time of an Interface to a Constant Current 1218
 7.9.6. The Concept of Transition Time 1221
 7.9.7. Convection Can Maintain Steady Interfacial Concentrations ... 1225
 7.9.8. The Origin of Concentration Overpotential 1230
 7.9.9. The Diffusion Layer .. 1232
 7.9.10. The Limiting Current Density and Its Practical Importance ... 1235
 7.9.10.1. Polarography: The Dropping-Mercury Electrode 1237
 7.9.11. The Steady-State Current–Potential Relation under Conditions of Transport Control ... 1246
 7.9.12. The Diffusion-Activation Equation 1247
 7.9.13. The Concentration of Charge Carriers at the Electrode ... 1247
 7.9.15. The Reciprocal Relation .. 1250
7.9.16. Reversible and Irreversible Reactions ... 1251
7.9.17. Transport-Controlled Deelectronation Reactions .. 1252
7.9.18. What Is the Effect of Electrical Migration on the Limiting
 Diffusion Current Density? ... 1253
7.9.19. Some Summarizing Remarks on the Transport Aspects of Electrodics 1254
 Further Reading ... 1256

7.10. How to Determine the Stepwise Mechanisms of Electrode
 Reactions ... 1257
7.10.1. Why Bother about Determining a Mechanism? ... 1257
7.10.2. What Does It Mean: “To Determine the Mechanism of an
 Electrode Reaction”? .. 1258
 7.10.2.1. The Overall Reaction. .. 1258
 7.10.2.2. The Pathway. .. 1259
 7.10.2.3. The Rate-Determining Step. ... 1260
7.10.3. The Mechanism of Reduction of O_2 on Iron at Intermediate pH’s
 ... 1263
7.10.4. Mechanism of the Oxidation of Methanol ... 1269
 Further Reading ... 1273
7.10.5. The Importance of the Steady State in Electrode Kinetics 1274

7.11. Electrocatalysis .. 1275
7.11.1. Introduction .. 1275
7.11.2. At What Potential Should the Relative Power of Electrocatalysts Be
 Compared? .. 1277
7.11.3. How Electrocatalysis Works .. 1280
7.11.4. Volcanoes .. 1284
7.11.5. Is Platinum the Best Catalyst? ... 1286
7.11.6. Bioelectrocatalysis ... 1287
 7.11.6.1. Enzymes. .. 1287
 7.11.6.2. Immobilization. .. 1289
 7.11.6.3. Is the Heme Group in Most Enzymes Too Far Away
 from the Metal for Enzymes to Be Active in Electrodes? 1289
 7.11.6.4. Practical Applications of Enzymes on Electrodes. 1291
 Further Reading ... 1292

7.12. The Electrogrowth of Metals on Electrodes .. 1293
7.12.1. The Two Aspects of Electrogrowth .. 1293
7.12.2. The Reaction Pathway for Electrodeposition .. 1294
7.12.3. Stepwise Dehydration of an Ion; the Surface Diffusion of
 Adions .. 1296
7.12.4. The Half-Crystal Position ... 1301
7.12.5. Deposition on an Ideal Surface: The Resulting Nucleation 1302
7.12.6. Values of the Minimum Nucleus Size Necessary for Continued
 Growth .. 1305
7.12.7. Rate of an Electrochemical Reaction Dependent on 2D
 Nucleation .. 1306
7.12.8. Surface Diffusion to Growth Sites ... 1307
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12.9. Residence Time</td>
<td>1310</td>
</tr>
<tr>
<td>7.12.10. The Random Thermal Displacement</td>
<td>1312</td>
</tr>
<tr>
<td>7.12.11. Underpotential Deposition</td>
<td>1313</td>
</tr>
<tr>
<td>7.12.11.1. Introduction</td>
<td>1313</td>
</tr>
<tr>
<td>7.12.11.2. Some Examples</td>
<td>1313</td>
</tr>
<tr>
<td>7.12.11.3. What Are the Causes of Underpotential Deposition?</td>
<td>1315</td>
</tr>
<tr>
<td>7.12.12. Some Devices for Building Lattices from Adions: Screw</td>
<td>1316</td>
</tr>
<tr>
<td>Dislocations and Spiral Growths</td>
<td></td>
</tr>
<tr>
<td>7.12.13. Microsteps and Macrosteps</td>
<td>1324</td>
</tr>
<tr>
<td>7.12.15. Crystal Facets Form</td>
<td>1328</td>
</tr>
<tr>
<td>7.12.16. Pyramids</td>
<td>1334</td>
</tr>
<tr>
<td>7.12.17. Deposition on Single-Crystal and Polycrystalline Substrates</td>
<td>1334</td>
</tr>
<tr>
<td>7.12.18. How the Diffusion of Ions in Solution May Affect Electrode</td>
<td>1335</td>
</tr>
<tr>
<td>growth</td>
<td></td>
</tr>
<tr>
<td>7.12.19. About the Variety of Shapes Formed in Electrodeposition</td>
<td>1336</td>
</tr>
<tr>
<td>7.12.20. Dendrites</td>
<td>1338</td>
</tr>
<tr>
<td>7.12.21. Organic Additives and Electrodeposits</td>
<td>1339</td>
</tr>
<tr>
<td>7.12.22. Material Failures Due to H Co-deposition</td>
<td>1340</td>
</tr>
<tr>
<td>7.12.23. Would Deposition from Nonaqueous Solutions Solve the</td>
<td>1341</td>
</tr>
<tr>
<td>Problems Associated with H Co-deposition?</td>
<td></td>
</tr>
<tr>
<td>7.12.25. Molten Salt Systems Avoid Hydrogen Codeposition</td>
<td>1344</td>
</tr>
<tr>
<td>7.12.25.1. "Nonaqueous."</td>
<td>1344</td>
</tr>
<tr>
<td>7.12.25.2. Advantages of Molten Salts as Solvents for Electrodeposition</td>
<td>1344</td>
</tr>
<tr>
<td>7.12.26. Photostimulated Electrodeposition of Metals on Semiconductors</td>
<td>1345</td>
</tr>
<tr>
<td>7.12.27. Surface Preparation: The Established Superiority of</td>
<td>1345</td>
</tr>
<tr>
<td>Electrochemical Techniques</td>
<td></td>
</tr>
<tr>
<td>7.12.28. Electrochemical Nanotechnology</td>
<td>1345</td>
</tr>
<tr>
<td>7.13.1. The Potential Difference across an Electrochemical System</td>
<td>1348</td>
</tr>
<tr>
<td>7.13.2. The Equilibrium Potential Difference across an Electrochemical Cell</td>
<td>1350</td>
</tr>
<tr>
<td>7.13.3. The Problem with Tables of Standard Electrode Potentials</td>
<td>1351</td>
</tr>
<tr>
<td>7.13.4. Are Equilibrium Cell Potential Differences Useful?</td>
<td>1356</td>
</tr>
<tr>
<td>7.13.5. Electrochemical Cells: A Qualitative Discussion of the</td>
<td>1361</td>
</tr>
<tr>
<td>Variation of Cell Potential with Current</td>
<td></td>
</tr>
<tr>
<td>7.13.6. Electrochemical Cells in Action: Some Quantitative Relations</td>
<td>1364</td>
</tr>
<tr>
<td>between Cell Current and Cell Potential</td>
<td></td>
</tr>
<tr>
<td>7.14. The Electrochemical Activation of Chemical Reactions</td>
<td>1370</td>
</tr>
<tr>
<td>Further Reading</td>
<td>1374</td>
</tr>
<tr>
<td>7.15. Electrochemical Reactions That Occur without Input of</td>
<td>1374</td>
</tr>
<tr>
<td>Electrical Energy</td>
<td></td>
</tr>
<tr>
<td>7.15.1. Introduction</td>
<td>1374</td>
</tr>
</tbody>
</table>
CHAPTER 8

TRANSIENTS

8.1. Introduction .. 1401
8.1.1. The Evolution of Short Time Measurements 1401
8.1.2. Another Reason for Making Transient Measurements 1403
8.1.3. Is there a Downside for Transients? 1407
8.1.4. General Comment on Factors in Achieving Successful Transient Measurements 1407

8.2. Galvanostatic Transients ... 1409
8.2.1. How They Work .. 1409
8.2.2. Chronopotentiometry .. 1411

8.3. Open-Circuit Decay Method 1412
8.3.1. The Mathematics .. 1412

8.4. Potentiostatic Transients ... 1414
8.4.1. The Method ... 1414

8.5. Other Matters Concerning Transients 1416
8.5.1. Reversal Techniques 1416
8.5.2. Summary of Transient Methods 1417
8.5.3. “Totally Irreversible,” etc.: Some Aspects of Terminology 1418
8.5.4. The Importance of Transient Techniques 1420

8.6. Cyclic Voltammetry .. 1422
8.6.1. Introduction .. 1422
8.6.2. Beginning of Cyclic Voltammetry 1424
8.6.3. The Range of the Cyclic Voltammetric Technique 1425
8.6.4. Cyclic Voltammetry: Its Limitations 1426
8.6.5. The Acceptable Sweep Rate Range 1427
8.6.5.1. What Would Make a Sweep Rate Too Fast? 1427
8.6.5.2. What Would Make a Sweep Rate Too Slow? 1427
8.6.6. The Shape of the Peaks in Potential–Sweep Curves 1428
8.6.7. Quantitative Calculation of Kinetic Parameters from Potential–Sweep Curves 1431
CHAPTER 9

SOME QUANTUM-ORIENTED ELECTROCHEMISTRY

9.1. Setting the Scene ... 1455
9.1.1. A Preliminary Discussion: Absolute or Vacuum-Scale Potentials 1457
9.2.1. The “Fermi Energy” of Electrons in Solution 1458
9.2.2. The Electrochemical Potential of Electrons in Solution and Their Quantal Energy States .. 1461
9.2.3. The Importance of Distribution Laws 1462
9.2.4. Distribution of Energy States in Solution: Introduction 1463
9.2.4.1. The Gaussian Distribution Law .. 1464
9.2.4.2. The Boltzmannian Distribution 1467
9.2.5. The Distribution Function for Electrons in Metals 1469
9.2.6. The Density of States in Metals .. 1471
Further Reading .. 1472

9.3 Potential Energy Surfaces and Electrode Kinetics 1473
9.3.1. Introduction .. 1473
9.3.2. The Basic Potential Energy Diagram 1475
9.3.3. Electrode Potential and the Potential Energy Curves 1479
9.3.3.1. A Simple Picture of the Symmetry Factor. 1479
9.3.3.2. Is the β in the Butler–Volmer Equation Independent of Over-potential? 1484
9.3.4. How Bonding of Surface Radicals to the Electrode Produces Electrocatalysis .. 1484
9.3.5. Harmonic and Anharmonic Curves ... 1487
9.3.6. How Many Dimensions? .. 1488

9.4. Tunneling .. 1489
9.4.1. The Idea ... 1489
9.4.2. Equations of Tunneling .. 1490
9.4.3. The WKB Approximation ... 1492
9.4.4. The Need for Receiver States .. 1494
9.4.5. Other Approaches to Quantum Transitions and Some Problems 1494
9.4.6. Tunneling through Adsorbed Layers at Electrodes and in Biological Systems .. 1495

9.5. Some Alternative Concepts and Their Terminology 1496
9.5.1. Introduction ... 1496
9.5.2. Outer Shell and Inner Shell Reactions 1496
9.5.3. Electron-Transfer and Ion-Transfer Reactions 1497
9.5.4. Adiabatic and Nonadiabatic Electrode Reactions ... 1497

9.6. A Quantum Mechanical Description of Electron Transfer 1499
9.6.1. Electron Transfer .. 1499
9.6.2. The Frank-Condon Principle in Electron Transfer 1504
9.6.3. What Happens if the Movements of the Solvent–Ion Bonds Are Taken as a Simple Harmonic? An Aberrant Expression for Free Energy Activation in Electron Transfer ... 1504
9.6.4. The Primacy of Tafel’s Law in Experimental Electrode Kinetics 1507

9.7. Four Models of Activation ... 1511
9.7.1. Origin of the Energy of Activation 1511
9.7.2. Weiss–Marcus: Electrostatic .. 1512
9.7.3. George and Griffith’s Thermal Model 1514
9.7.4. Fluctuations of the Ground State Model 1515
9.7.5. The Librator Fluctuation Model .. 1516
9.7.6. The Vibron Model .. 1517

9.8. Bond-Breaking Reactions ... 1518
9.8.1. Introduction ... 1518

9.9. A Quantum Mechanical Formulation of the Electrochemical Current Density .. 1521
9.9.1. Equations ... 1521

9.10. A Retrospect and Prospect For Quantum Electrochemistry 1522
9.10.1. Discussion ... 1522

Appendix. The Symmetry Factor: Do We Understand It? 1526
A.1. Introduction: Gurney–Butler .. 1526
A.2. Activationless and Barrierless .. 1528
A.3. The Dark Side of β .. 1529

Index ... xxix