Part One: The Birth of a New Physics

1.1 The Electron

1.2 Electromagnetic Waves

1.2.1 The Production and Properties of Electromagnetic Waves

1.2.2 The Limits of Electromagnetic Theory

1.3 The Special Theory of Relativity

1.3.1 The Principle of Covariance

1.3.2 The Newtonian Conception of Motion

- Example 1.1 The Galilean Transformation
- Example 1.2 The Velocity of Sound Relative to a Moving Observer

1.3.3 The Michelson-Morley Experiment

1.3.4 The Postulates of the Special Theory of Relativity

1.3.5 Simultaneity and the Relativity of Time

1.3.6 The Lorentz Transformation

- Example 1.3 The Lorentz Transformation and Special Relativity

1.3.7 Relativistic Mechanics - Kinematics

- Example 1.4 The Mystery of the Muons
- Example 1.5 Stationary Clocks and Moving Clocks
- Example 1.6 The Minkowski Diagrams of Different Observers - The Twins Paradox

1.3.8 Relativistic Mechanics - Dynamics

- Example 1.7 Calculations in Relativistic Mechanics
- Example 1.8 The Transformation of Energy and Momentum

1.3.9 Magnetism - A Relativistic Effect

1.4 The General Theory of Relativity

1.4.1 The Postulates of the General Theory of Relativity

1.4.2 Gravitation and the General Theory of Relativity

1.4.3 Gravity and Geometry

1.5 Appendices to Part One

1.5.1 Velocity Addition in Special Relativity

1.5.2 The Kinetic Energy of a Particle in Special Relativity

1.5.3 The Total Energy of a Particle

1.5.4 The Transformation of Force

Questions, Exercises and Problems
Part Two: Quantum Theory

2.1 The Quantum Hypothesis

- **2.1.1 Radiators and Radiation**
- **2.1.2 Thermal Radiation**
- **2.1.3 Black-body Radiation**
 - *Example 2.1* Wien's Law
 - *Example 2.2* Blackbody Radiation and Astronomy
- **2.1.4 Difficulties in the Classical Theory of Radiation**
 - *Example 2.3* The Frequencies in Cavity Radiation
- **2.1.5 Planck's Quantum Hypothesis**
- **2.1.6 Atomic Spectra**
- **2.1.7 The Franck-Hertz Experiment**

2.2 The Photoelectric Effect

- **2.2.1 The Photoelectric Effect - The Problem**
- **2.2.2 Einstein's Equation**
 - *Example 2.4* Photons and Wavelengths
 - *Example 2.5* Counting Photons
- **2.2.3 Planck's Constant**
 - *Example 2.6* Photoelectrons
- **2.2.4 X-rays**
 - *Example 2.7* Minimum X-ray Wavelength
- **2.2.5 X-rays and Crystallography**
 - *Example 2.8* X-ray Crystallography

2.3 Photons

- **2.3.1 Photon Mass**
 - *Example 2.9* Radiation Pressure
- **2.3.2 The Compton Effect**
 - *Example 2.10* The Compton Wavelength
- **2.3.3 Photons - Light Particles**
- **2.3.4 The Locality Paradox**
 - *Example 2.11* Photons and Interference Patterns

2.4 The Mechanics of Minute Particles

- **2.4.1 De Broglie's Hypothesis**
 - *Example 2.12* Electron Diffraction - Thomson’s Experiment
- **2.4.2 Heisenberg's Uncertainty Principle**
 - *Example 2.13* Heisenberg's Uncertainty Principle
- **2.4.3 Matter Waves**
- **2.4.4 Wave Functions and Probability Amplitudes**
- **2.4.5 The Wave Function of a Free Particle**
- **2.4.6 Quantum Mechanics - Schrödinger’s Equation**
- **2.4.7 Quantum Mechanics - Potential Wells**
- **2.4.8 The Tunnel Effect**
Table of Contents

2.5 Appendices to Part Two 174
2.5.1 The Kinetic Energy and Linear Momentum of a Particle 174
2.5.2 The Wave Function of a Trapped Particle 174

Questions, Exercises and Problems 177

Part Three: The Nuclear Atom 183

3.1 The Structure of the Atom 185
3.1.1 The Thomson Model of the Atom 185
3.1.2 The Nuclear Atom 187

Example 3.1 The Atomic Nucleus 187

3.2 The Bohr Model of the Atom 193
3.2.1 The Hydrogen Atom 195

Example 3.2 Spectral Transitions 195
Example 3.3 The Correspondence Principle 204
Example 3.4 The Bohr Atom and De Broglie's Principle 207

3.2.2 The Zeeman Effect - Space Quantisation 204
3.2.3 Moseley's Experiment 207

Example 3.5 The Characteristic X-ray Spectrum of Copper 207

3.3 The Quantum Mechanical Model of the Atom 215
3.3.1 The Hydrogen Atom 215

Example 3.6 The Average Distance of the Electron from the Hydrogen Nucleus 226

Example 3.7 The Probability of Finding an Electron 226

3.3.2 Atomic Spectra and Quantum Mechanics 226

3.4 Electron Spin 231
3.4.1 Electron Spin 231
3.4.2 The Stern-Gerlach Experiment 233

Example 3.8 Electron Spin Resonance 233
3.4.3 Spin-Orbit Coupling 236
3.4.4 The Pauli Exclusion Principle and the Periodic Table 238
3.4.5 Spin, Identical Particles and the Pauli Principle 243
3.4.6 Total Spin 247
3.4.7 The Energy Levels in Multi-electron Atoms 249
3.4.8 Total Spin and the Energy Levels in Molecules 254

3.5 Appendices to Part Three 262
3.5.1 The Energy of an Orbiting Charged Particle 262
3.5.2 The Schrödinger Equation for the Hydrogen Atom 263
3.5.3 The Angular Momentum of an Orbiting Particle 270

Questions, Exercises and Problems 272
Part Four: Interactions of Electromagnetic Radiation and Matter 277

4.1 The Passage of Radiation through Matter 279
 4.1.1 The Attenuation of Radiation by Matter 281
 Example 4.1 The Attenuation of Ultra-violet Radiation
 4.1.2 Mechanisms of the Absorption of Radiation 282
 4.1.3 Quantum Electrodynamics 287

4.2 Molecular Spectra 295
 4.2.1 Molecular Energies 295
 4.2.2 Rotational Spectra 296
 Example 4.2 The Interatomic Distance in the HCl Molecule
 4.2.3 Vibrational Spectra 299
 Example 4.3 Vibrational Spectrum of CO
 4.2.4 Electronic Spectra 304
 Example 4.4 The Excitation of π Electrons
 4.2.5 Raman Spectra 307

4.3 Fluorescence and Phosphorescence 309
 4.3.1 Fluorescence in Biological Systems 311

4.4 Appendices to Part Four 318
 4.4.1 Raleigh Scattering 318
 4.4.2 Moment of Inertia of a Diatomic Molecule 318

Questions, Exercises and Problems 320

Part Five: Nuclear Physics 323

5.1 The Structure of the Nucleus 325
 5.1.1 Nucleons 325
 5.1.2 Nuclear Nomenclature 326
 5.1.3 Nuclear Masses; Isotopes 328
 Example 5.1 The Density of Nuclear Material
 5.1.4 Nuclear Binding Energy 330
 Example 5.2 Binding Energy per Nucleon
 Example 5.3 Nuclear Magic Numbers
 5.1.5 The Nuclear (‘Strong’) Force 333
 5.1.6 Nuclear Models 336
 5.1.7 The Elementary Particles of Matter 337

5.2 Nuclear Radiations 345
 5.2.1 The Nature of the Nuclear Radiations 345
 5.2.2 Mechanisms of Nuclear Radiation Attenuation 347
Table of Contents

5.2.3 Detectors of Ionising Radiation 350
5.2.4 The Biological Effects of Nuclear Radiation 353

5.3 Radioactivity 359
5.3.1 The Disintegration of Unstable Nuclei 359
Example 5.4 Disintegration Energy
5.3.2 The Kinetics of Radioactive Disintegration 362
Example 5.5 Radioactive Disintegration
5.3.3 Age Determination with Radio-isotopes 364
Example 5.6 Carbon 14 Dating
5.3.4 Uses of Radio-isotopes 366
Example 5.7 Dosimetry
5.3.5 The Factors Affecting Nuclear Stability 368
Example 5.8 Disintegration Modes of Heavy Nuclei
5.3.6 The Mechanism of α Decay 371
5.3.7 The Mechanism of β Decay - Weak Charge 373

5.4 Nuclear Reactions and Nuclear Energy 385
5.4.1 Nuclear Reactions 386
5.4.2 The Discovery of the Neutron 388
5.4.3 Nuclear Cross-sections 390
Example 5.9 Nuclear Cross-sections
5.4.4 Nuclear Energy - Fusion and Fission 393
Example 5.10 Endoergic Nuclear Reactions
5.4.5 Nuclear Fusion 396
5.4.6 Nuclear Fission 399
5.4.7 Nuclear Chain Reactions 403
5.4.8 Fission by Fast Neutrons - Bombs 407
5.4.9 Fission by Slow Neutrons - Nuclear Reactors 413
Example 5.11 The Slow Neutron Chain Reaction of Natural Uranium
5.4.10 Nuclear Engineering: The Chernobyl Catastrophe 419

5.5 Appendices to Part Five 424
5.5.1 The Mean Lifetime of a Radioactive Nucleus 424
5.5.2 Radioactive Decays of the Type A → B → C 424

Questions, Exercises and Problems 426

Part Six: Selected Applications 429

6.1 The Laser 431
6.1.1 The Spontaneous and Stimulated Emission of Radiation 431
6.1.2 Laser Action 433
6.1.3 The Ruby Laser 435
6.1.4 The Helium-Neon Laser 437
6.1.5 Laser Applications 438
Table of Contents

6.2 The Mössbauer Effect
- 6.2.1 The Width of Spectral Lines 443
 - Example 6.1 The Width of Spectral Lines
- 6.2.2 The Mechanics of Photon Emission and Absorption 446
- 6.2.3 Recoilless Emission and Absorption 448
- 6.2.4 The Gravitational Shift - Black Holes 450

6.3 Nuclear Magnetic Resonance
- 6.3.1 Magnetism and Angular Momentum 455
- 6.3.2 Nuclear Magnetic Moments 456
- 6.3.3 Nuclear Magnetic Resonance 459
- 6.3.4 Observing Nuclear Magnetic Resonance 461
- 6.3.5 Chemical Shift 465
- 6.3.6 Applications of Nuclear Magnetic Resonance 468

6.4 The Conduction of Electricity Through Solids
- 6.4.1 The Electrical Conductivity of Solids 471
- 6.4.2 The Electron Gas 473
 - Example 6.2 The Relaxation Time of Conduction Electrons
- 6.4.3 Energy Levels in Solids - Band Theory 475
- 6.4.4 Insulators 477
- 6.4.5 Metallic Conductors 478
 - Example 6.3 The Velocity of Conduction Electrons
 - Example 6.4 The Mean Path-length of the Conduction Electrons
- 6.4.6 Superconductivity 483
- 6.4.7 Semiconductors 485
- 6.4.8 The p-n Junction 489
- 6.4.9 Semiconductor Devices 493

6.5 Invariance, Symmetry and Conservation Laws
- 6.5.1 The Symmetry of the Laws of Physics 502
- 6.5.2 Group Theory 503
- 6.5.3 Noether’s Theorem 506
- 6.5.4 The Conservation Laws of Particle Physics 508

6.6 Appendices to Part Six
- 6.6.1 The Probabilities of Stimulated and Spontaneous Emission 514

Questions, Exercises and Problems 517

Supplementary Topics 519

- A The Mathematical Description of Wave Motion 519
- B List of Physical Constants and Conversion Factors 527
- C The Greek Alphabet 527

Answers to the Numerical Exercises and Problems 528

Index 531