CONTENTS

1 GREEN FUNCTIONS IN THE BCS THEORY

1 Introduction
 1.1 Superconducting variables
 1.1.1 Ginzburg–Landau theory
 1.1.2 Example: Vortices in type II superconductors
 1.1.3 Bogoliubov–de Gennes equations
 1.1.4 Quasiclassical approximation
 1.2 Nonstationary phenomena
 1.2.1 Time-dependent Ginzburg–Landau theory
 1.2.2 Microscopic argumentation
 1.2.3 Boltzmann kinetic equation
 1.3 Outline of the contents

2 Green functions
 2.1 Second quantization
 2.1.1 Schrödinger and Heisenberg operators
 2.2 Imaginary-time Green function
 2.2.1 Definitions
 2.2.2 Example: Free particles
 2.2.3 The Wick theorem
 2.3 The real-time Green functions
 2.3.1 Definitions
 2.3.2 Analytical properties

3 The BCS model
 3.1 BCS theory and Gor’kov equations
 3.1.1 Magnetic field
 3.1.2 Frequency and momentum representation
 3.1.3 Order parameter of a d-wave superconductor
 3.2 Derivation of the Bogoliubov–de Gennes equations
 3.3 Thermodynamic potential
 3.4 Example: Homogeneous state
 3.4.1 Green functions
 3.4.2 Gap equation for an s-wave superconductor
 3.5 Perturbation theory
 3.5.1 Diagram technique
 3.5.2 Electric current
CONTENTS

4 Superconducting alloys
 4.1 Averaging over impurity positions
 4.1.1 Magnetic impurities
 4.2 Homogeneous state of an s-wave superconductor

II QUASICLASSICAL METHOD

5 General principles of the quasiclassical approximation
 5.1 Quasiclassical Green functions
 5.2 Density, current, and order parameter
 5.3 Homogeneous state
 5.4 Real-frequency representation
 5.4.1 Example: Homogeneous state
 5.5 Eilenberger equations
 5.5.1 Self-energy
 5.5.2 Normalization
 5.6 Dirty limit. Usadel equations
 5.7 Boundary conditions
 5.7.1 Diffusive surface

6 Quasiclassical methods in stationary problems
 6.1 s-wave superconductors with impurities
 6.1.1 Small currents in a uniform state
 6.1.2 Ginzburg–Landau theory
 6.1.3 The upper critical field in a dirty alloy
 6.2 Gapless s-wave superconductivity
 6.2.1 Critical temperature
 6.2.2 Gap in the energy spectrum
 6.3 Aspects of d-wave superconductivity
 6.3.1 Impurities and d-wave superconductivity
 6.3.2 Impurity-induced gapless excitations
 6.3.3 The Ginzburg–Landau equations
 6.4 Bound states in vortex cores
 6.4.1 Superconductors with s-wave pairing
 6.4.2 d-wave superconductors

7 Quasiclassical method for layered superconductors
 7.1 Quasiclassical Green functions
 7.2 Eilenberger equations for layered systems
 7.3 Lawrence–Doniach model
 7.3.1 Order parameter
 7.3.2 Free energy and the supercurrent
 7.3.3 Microscopic derivation of the supercurrent
 7.4 Applications of the Lawrence–Doniach model
 7.4.1 Upper critical field
 7.4.2 Intrinsic pinning
CONTENTS

III NONEQUILIBRIUM SUPERCONDUCTIVITY

8 Nonstationary theory
 8.1 The method of analytical continuation 143
 8.1.1 Clean superconductors 145
 8.1.2 Impurities 149
 8.1.3 Order parameter, current, and particle density 152
 8.2 The phonon model 152
 8.2.1 Self-energy 152
 8.2.2 Order parameter 157
 8.3 Particle–particle collisions 159
 8.4 Transport-like equations and the conservation laws 161
 8.5 The Keldysh diagram technique 163
 8.5.1 Definitions of the Keldysh functions 163
 8.5.2 Dyson equation 167
 8.5.3 Keldysh functions in the BCS theory 168

9 Quasiclassical method for nonstationary phenomena 170
 9.1 Eliashberg equations 170
 9.1.1 Self-energies 172
 9.1.2 Order parameter, current, and particle density 174
 9.1.3 Normalization of the quasiclassical functions 174
 9.2 Generalized distribution function 175
 9.3 s-wave superconductors with a short mean free path 177
 9.4 Stimulated superconductivity 181

10 Kinetic equations 186
 10.1 Gauge-invariant Green functions 186
 10.1.1 Equations of motion for the invariant functions 188
 10.2 Quasiclassical kinetic equations 192
 10.2.1 Superconductors in electromagnetic fields 194
 10.2.2 Discussion 197
 10.3 Observables in the gauge-invariant representation 199
 10.3.1 The electron density and charge neutrality 201
 10.4 Collision integrals 203
 10.4.1 Impurities 204
 10.4.2 Electron–phonon collision integral 205
 10.4.3 Electron–electron collision integral 207
 10.5 Kinetic equations for dirty s-wave superconductors 209
 10.5.1 Small gradients without magnetic impurities 210
 10.5.2 Heat conduction 211

11 The time-dependent Ginzburg–Landau theory 213
 11.1 Gapless superconductors with magnetic impurities 213
 11.2 Generalized TDGL equations 215
 11.3 TDGL theory for d-wave superconductors 221
 11.4 d.c. electric field in superconductors. Charge imbalance 226
IV VORTEX DYNAMICS

12 Time-dependent Ginzburg–Landau analysis 231
 12.1 Introduction 231
 12.2 Energy balance 233
 12.3 Moving vortex 234
 12.4 Force balance 236
 12.5 Flux flow 238
 12.5.1 Single vortex: Low fields 238
 12.5.2 Dense lattice: High fields 240
 12.5.3 Direction of the vortex motion 242
 12.6 Anisotropic superconductors 243
 12.6.1 Low fields 245
 12.6.2 High fields 246
 12.7 Flux flow in layered superconductors 246
 12.7.1 Motion of pancake vortices 247
 12.7.2 Intrinsic pinning 247
 12.8 Flux flow within a generalized TDGL theory 248
 12.8.1 Dirty superconductors 248
 12.8.2 d-wave superconductors 251
 12.8.3 Discussion: Flux flow conductivity 252
 12.9 Flux flow Hall effect 253
 12.9.1 Modified TDGL equations 254
 12.9.2 Hall effect: Low fields 255
 12.9.3 High fields 256
 12.9.4 Discussion: Hall effect 256

13 Vortex dynamics in dirty superconductors 259
 13.1 Microscopic derivation of the force on moving vortices 259
 13.1.1 Variation of the thermodynamic potential 259
 13.1.2 Force on vortices 260
 13.2 Diffusion controlled flux flow 263
 13.2.1 Discussion 269

14 Vortex dynamics in clean superconductors 271
 14.1 Introduction 271
 14.1.1 Boltzmann kinetic equation approach 272
 14.1.2 Forces in s-wave superconductors 274
 14.2 Spectral representation for the Green functions 277
 14.3 Useful identities 279
 14.4 Distribution function 282
 14.4.1 Localized excitations 282
 14.4.2 Delocalized excitations 287
 14.5 Flux flow conductivity 290
 14.6 Discussion 292
 14.6.1 Conductivity: Low temperatures 292