Chapter 15
Expression of Cloned Genes in *Escherichia coli*

INTRODUCTION

PROTOCOLS

1. Expression of Cloned Genes in *E. coli* Using IPTG-inducible Promoters
2. Expression of Cloned Genes in *E. coli* Using the Bacteriophage T7 Promoter
3. Expression of Cloned Genes in *E. coli* Using the Bacteriophage λ pL Promoter
4. Expression of Secreted Foreign Proteins Using the Alkaline Phosphatase Promoter (phoA) and Signal Sequence
 - Additional Protocol: Subcellular Localization of PhoA Fusion Proteins
5. Purification of Fusion Proteins by Affinity Chromatography on Glutathione Agarose
6. Purification of Maltose-binding Fusion Proteins by Affinity Chromatography on Amylose Resin
7. Purification of Histidine-tagged Proteins by Immobilized Ni²⁺ Absorption Chromatography
 - Alternative Protocol: Elution of Polyhistidine-tagged Proteins from Metal Affinity Columns Using Decreasing pH
 - Additional Protocol: Regeneration of NTA-Ni²⁺-Agarose
8. Purification of Expressed Proteins from Inclusion Bodies
 - Additional Protocol: Refolding Solubilized Proteins Recovered from Inclusion Bodies

INFORMATION PANELS

Expression of Cloned Genes
E. coli Expression Systems
LacZ Fusions
Chaotrophic Agents

Chapter 16
Introducing Cloned Genes into Cultured Mammalian Cells

INTRODUCTION

PROTOCOLS

1. DNA Transfection Mediated by Lipofection
 - Additional Protocol: Histochemical Staining of Cell Monolayers for β-Galactosidase
2. Calcium-phosphate-mediated Transfection of Eukaryotic Cells with Plasmid DNAs
 - Alternative Protocol: High-efficiency Calcium-phosphate-mediated Transfection of Eukaryotic Cells with Plasmid DNAs
3. Calcium-phosphate-mediated Transfection of Cells with High-molecular-weight Genomic DNA
Chapter 17

Analysis of Gene Expression in Cultured Mammalian Cells

INTRODUCTION

PROTOCOLS

<table>
<thead>
<tr>
<th>Cis-acting Regions and Trans-acting Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Analysis of Primary Transcripts

| 4 | Transcriptional Run-on Assays | 17.23 |

Reporter Assays

5	Measurement of Chloramphenicol Acetyltransferase in Extracts of Mammalian Cells Using Thin-layer Chromatography	17.33
	• Alternative Protocol: Measurement of CAT by Extraction with Organic Solvents	17.40
	• Alternative Protocol: Measurement of CAT following Diffusion of Reaction Products into Scintillation Fluid	17.41
6	Assay for Luciferase in Extracts of Mammalian Cells	17.42
- Alternative Protocol: Using a Scintillation Counter to Measure Luciferase 17.46
- Alternative Protocol: Assay for Luciferase in Cells Growing in 96-well Plates 17.47
7 Assay for β-galactosidase in Extracts of Mammalian Cells 17.48

Inducible Systems

8 Tetracycline as Regulator of Inducible Gene Expression in Mammalian Cells 17.52
 Stage 1: Stable Transfection of Fibroblasts with pTet-tTAk 17.60
 Stage 2: Stable Transfection of Inducible tTA-expressing NIH-3T3 Cells with Tetracycline-regulated Target Genes 17.65
 Stage 3: Analysis of Protein Expression in Transfected Cells 17.68
 - Alternative Protocol: Tetracycline-regulated Induction of Gene Expression in Transiently Transfected Cells Using the Autoregulatory tTA System 17.70
9 Ecdysone as Regulator of Inducible Gene Expression in Mammalian Cells 17.71

INFORMATION PANELS
Footprinting DNA 17.75
Gel Retardation Assays 17.78
Baculoviruses and Baculovirus Expression Systems 17.81
Green Fluorescent Proteins 17.84
Epitope Tagging 17.90
Chloramphenicol Acetyltransferase 17.94
Luciferase 17.96
β-galactosidase 17.97

Chapter 18
Protein Interaction Technologies 18.1

INTRODUCTION

PROTOCOLS

1 Two-hybrid and Other Two-component Systems 18.6
 Stage 1: Characterization of a Bait-LexA Fusion Protein 18.17
 - Alternative Protocol: Assay of β-galactosidase Activity by Chloroform Overlay 18.28
 Stage 2: Selecting an Interactor 18.30
 Stage 3: Second Confirmation of Positive Interactions 18.38
 - Alternative Protocol: Rapid Screen for Interaction Trap Positives 18.46
2 Detection of Protein-Protein Interactions Using Far Western with GST Fusion Proteins 18.48
 - Additional Protocol: Refolding of Membrane-bound Proteins 18.53
 - Alternative Protocol: Detection of Protein-Protein Interactions with Anti-GST Antibodies 18.54
3 Detection of Protein-Protein Interactions Using the GST Fusion Protein Pulldown Technique 18.55
4 Identification of Associated Proteins by Coimmunoprecipitation 18.60
5 Probing Protein Interactions Using GFP and Fluorescence Resonance Energy Transfer 18.69
 Stage 1: Labeling Proteins with Fluorescent Dyes 18.80
Stage 2: Cell Preparation for FLIM-FRET Analysis 18.84
• Alternative Protocol: Preparation of Fixed Cells for FLIM-FRET Analysis 18.87
• Alternative Protocol: Microinjection of Live Cells 18.88
Stage 3: FLIM-FRET Measurements 18.90
6 Analysis of Interacting Proteins with Surface Plasmon Resonance Spectroscopy 18.96
Using BIAcore
 Stage 1: Preparation of the Capture Surface and Test Binding 18.104
 Stage 2: Kinetic Analysis of the Antibody-Antigen Interaction 18.108

INFORMATION PANELS
Filamentous Phage Display 18.115
Genomics and the Interaction Trap 18.123
Interaction Trap and Related Technologies 18.125

Appendices

1 Preparation of Reagents and Buffers Used in Molecular Cloning, A1.1
2 Media, A2.1
3 Vectors and Bacterial Strains, A3.1
4 Enzymes Used in Molecular Cloning, A4.1
5 Inhibitors of Enzymes, A5.1
6 Nucleic Acids, A6.1
7 Codons and Amino Acids, A7.1
8 Commonly Used Techniques in Molecular Cloning, A8.1
9 Detection Systems, A9.1
10 DNA Array Technology, A10.1
11 Bioinformatics, A11.1
12 Cautions, A12.1
13 Suppliers, A13.1
14 Trademarks, A14.1
Appendix References, R1

INDEX, I.1