Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>About ECAS</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>Contributors</td>
<td>xvii</td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D. Peña and G. C. Tiao</td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>Examples of time series problems, 1</td>
<td></td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Stationary series, 2</td>
<td></td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Nonstationary series, 3</td>
<td></td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Seasonal series, 5</td>
<td></td>
</tr>
<tr>
<td>1.1.4.</td>
<td>Level shifts and outliers in time series, 7</td>
<td></td>
</tr>
<tr>
<td>1.1.5.</td>
<td>Variance changes, 7</td>
<td></td>
</tr>
<tr>
<td>1.1.6.</td>
<td>Asymmetric time series, 7</td>
<td></td>
</tr>
<tr>
<td>1.1.7.</td>
<td>Unidirectional–feedback relation between series, 9</td>
<td></td>
</tr>
<tr>
<td>1.1.8.</td>
<td>Comovement and cointegration, 10</td>
<td></td>
</tr>
<tr>
<td>1.2.</td>
<td>Overview of the book, 10</td>
<td></td>
</tr>
<tr>
<td>1.3.</td>
<td>Further reading, 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PART I BASIC CONCEPTS IN UNIVARIATE TIME SERIES</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Univariate Time Series: Autocorrelation, Linear Prediction, Spectrum,</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>and State-Space Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. T. Wilson</td>
<td></td>
</tr>
<tr>
<td>2.1.</td>
<td>Linear time series models, 25</td>
<td></td>
</tr>
<tr>
<td>2.2.</td>
<td>The autocorrelation function, 28</td>
<td></td>
</tr>
<tr>
<td>2.3.</td>
<td>Lagged prediction and the partial autocorrelation function, 33</td>
<td></td>
</tr>
</tbody>
</table>
2.4. Transformations to stationarity, 35
2.5. Cycles and the periodogram, 37
2.6. The spectrum, 42
2.7. Further interpretation of time series acf, pacf, and spectrum, 46
2.8. State-space models and the Kalman Filter, 48

3. Univariate Autoregressive Moving-Average Models

G. C. Tiao

- **3.1. Introduction, 53**
 - 3.1.1. Univariate ARMA models, 54
 - 3.1.2. Outline of the chapter, 55

- **3.2. Some basic properties of univariate ARMA models, 55**
 - 3.2.1. The \(\psi \) and \(\pi \) weights, 56
 - 3.2.2. Stationarity condition and autocovariance structure of \(z_t \), 58
 - 3.2.3. The autocorrelation function, 59
 - 3.2.4. The partial autocorrelation function, 60
 - 3.2.5. The extended autocorrelation function, 61

- **3.3. Model specification strategy, 63**
 - 3.3.1. Tentative specification, 63
 - 3.3.2. Tentative model specification via SEACF, 67

- **3.4. Examples, 68**

4. Model Fitting and Checking, and the Kalman Filter

G. T. Wilson

- **4.1. Prediction error and the estimation criterion, 86**
- **4.2. The likelihood of ARMA models, 90**
- **4.3. Likelihoods calculated using orthogonal errors, 94**
- **4.4. Properties of estimates and problems in estimation, 98**
- **4.5. Checking the fitted model, 101**
- **4.6. Estimation by fitting to the sample spectrum, 104**
- **4.7. Estimation of structural models by the Kalman filter, 105**

5. Prediction and Model Selection

D. Peña

- **5.1. Introduction, 111**
- **5.2. Properties of minimum mean-square error prediction, 112**
 - 5.2.1. Prediction by the conditional expectation, 112
 - 5.2.2. Linear predictions, 113
5.3. The computation of ARIMA forecasts, 114
5.4. Interpreting the forecasts from ARIMA models, 116
 5.4.1. Nonseasonal models, 116
 5.4.2. Seasonal models, 120
5.5. Prediction confidence intervals, 123
 5.5.1. Known parameter values, 123
 5.5.2. Unknown parameter values, 124
5.6. Forecast updating, 125
 5.6.1. Computing updated forecasts, 125
 5.6.2. Testing model stability, 125
5.7. The combination of forecasts, 129
5.8. Model selection criteria, 131
 5.8.1. The FPE and AIC criteria, 131
 5.8.2. The Schwarz criterion, 133
5.9. Conclusions, 133

6. Outliers, Influential Observations, and Missing Data 136
 D. Peña

 6.1. Introduction, 136
6.2. Types of outliers in time series, 138
 6.2.1. Additive outliers, 138
 6.2.2. Innovative outliers, 141
 6.2.3. Level shifts, 143
 6.2.4. Outliers and intervention analysis, 146
6.3. Procedures for outlier identification and estimation, 147
 6.3.1. Estimation of outlier effects, 148
 6.3.2. Testing for outliers, 149
6.4. Influential observations, 152
 6.4.1. Influence on time series, 152
 6.4.2. Influential observations and outliers, 153
6.5. Multiple outliers, 154
 6.5.1. Masking effects, 154
 6.5.2. Procedures for multiple outlier identification, 156
6.6. Missing-value estimation, 160
 6.6.1. Optimal interpolation and inverse autocorrelation function, 160
 6.6.2. Estimation of missing values, 162
6.7. Forecasting with outliers, 164
6.8. Other approaches, 166
6.9. Appendix, 166
7. Automatic Modeling Methods for Univariate Series

V. Gómez and A. Maravall

7.1. Classical model identification methods, 171
 7.1.1. Subjectivity of the classical methods, 172
 7.1.2. The difficulties with mixed ARMA models, 173

7.2. Automatic model identification methods, 173
 7.2.1. Unit root testing, 174
 7.2.2. Penalty function methods, 174
 7.2.3. Pattern identification methods, 175
 7.2.4. Uniqueness of the solution and the purpose of modeling, 176

7.3. Tools for automatic model identification, 177
 7.3.1. Test for the log-level specification, 177
 7.3.2. Regression techniques for estimating unit roots, 178
 7.3.3. The Hannan–Rissanen method, 181
 7.3.4. Liu’s filtering method, 185

7.4. Automatic modeling methods in the presence of outliers, 186
 7.4.1. Algorithms for automatic outlier detection and correction, 186
 7.4.2. Estimation and filtering techniques to speed up the algorithms, 190
 7.4.3. The need to robustify automatic modeling methods, 191
 7.4.4. An algorithm for automatic model identification in the presence of outliers, 191

7.5. An automatic procedure for the general regression–ARIMA model in the presence of outliers, special effects, and, possibly, missing observations, 192
 7.5.1. Missing observations, 192
 7.5.2. Trading day and Easter effects, 193
 7.5.3. Intervention and regression effects, 194

7.6. Examples, 194

7.7. Tabular summary, 196

8. Seasonal Adjustment and Signal Extraction

Time Series

V. Gómez and A. Maravall

8.1. Introduction, 202

8.2. Some remarks on the evolution of seasonal adjustment methods, 204
CONTENTS

8.2.1. Evolution of the methodologic approach, 204
8.2.2. The situation at present, 207
8.3. The need for preadjustment, 209
8.4. Model specification, 210
8.5. Estimation of the components, 213
 8.5.1. Stationary case, 215
 8.5.2. Nonstationary series, 217
8.6 Historical or final estimator, 218
 8.6.1. Properties of final estimator, 218
 8.6.2. Component versus estimator, 219
 8.6.3. Covariance between estimators, 221
8.7. Estimators for recent periods, 221
8.8. Revisions in the estimator, 223
 8.8.1. Structure of the revision, 223
 8.8.2. Optimality of the revisions, 224
8.9. Inference, 225
 8.9.1. Optical Forecasts of the Components, 225
 8.9.2. Estimation error, 225
 8.9.3. Growth rate precision, 226
 8.9.4. The gain from concurrent adjustment, 227
 8.9.5. Innovations in the components (pseudoinnovations), 228
8.10. An example, 228
8.11. Relation with fixed filters, 235
8.12. Short-versus long-term trends; measuring economic cycles, 236

PART II ADVANCED TOPICS IN UNIVARIATE TIME SERIES

9. Heteroscedastic Models
 R. S. Tsay
 9.1. The ARCH model, 250
 9.1.1. Some simple properties of ARCH models, 252
 9.1.2. Weaknesses of ARCH models, 254
 9.1.3. Building ARCH models, 254
 9.1.4. An illustrative example, 255
 9.2. The GARCH Model, 256
 9.2.1. An illustrative example, 257
 9.2.2. Remarks, 259
9.3. The exponential GARCH model, 260
 9.3.1. An illustrative example, 261
9.4. The CHARMA model, 262
9.5. Random coefficient autoregressive (RCA) model, 263
9.6. Stochastic volatility model, 264
9.7. Long-memory stochastic volatility model, 265

 R. S. Tsay

 10.1. Introduction, 267
 10.2. Nonlinearity tests, 268
 10.2.1. The test, 268
 10.2.2. Comparison and application, 270
 10.3. The Tar model, 274
 10.3.1. U.S. real GNP, 275
 10.3.2. Postsample forecasts and discussion, 279
 10.4. Concluding remarks, 282

11. Bayesian Time Series Analysis 286
 R. S. Tsay

 11.1. Introduction, 286
 11.2. A general univariate time series model, 288
 11.3. Estimation, 289
 11.3.1. Gibbs sampling, 291
 11.3.2. Griddy Gibbs, 292
 11.3.3. An illustrative example, 292
 11.4. Model discrimination, 294
 11.4.1. A mixed model with switching, 295
 11.4.2. Implementation, 296
 11.5. Examples, 297

12 Nonparametric Time Series Analysis: Nonparametric Regression, Locally Weighted Regression, Autoregression, and Quantile Regression 308
 S. Heiler

 12.1 Introduction, 308
 12.2 Nonparametric regression, 309
 12.3 Kernel estimation in time series, 314
 12.4 Problems of simple kernel estimation and restricted approaches, 319
12.5 Locally weighted regression, 321
12.6 Applications of locally weighted regression to time series, 329
12.7 Parameter selection, 330
12.8 Time series decomposition with locally weighted regression, 336

13. Neural Network Models
K. Hornik and F. Leisch
13.1. Introduction, 348
13.2. The multilayer perceptron, 349
13.3. Autoregressive neural network models, 354
13.3.1. Example: Sunspot series, 355
13.4. The recurrent perceptron, 356
13.4.1. Examples of recurrent neural network models, 357
13.4.2. A unifying view, 359

PART III MULTIVARIATE TIME SERIES

14. Vector ARMA Models
G. C. Tiao
14.1. Introduction, 365
14.2. Transfer function or unidirectional models, 366
14.3. The vector ARMA model, 368
14.3.1. Some simple examples, 368
14.3.2. Relationship to transfer function model, 371
14.3.3. Cross-covariance and correlation matrices, 371
14.3.4. The partial autoregression matrices, 372
14.4. Model building strategy for multiple time series, 373
14.4.1. Tentative specification, 373
14.4.2. Estimation, 378
14.4.3. Diagnostic checking, 379
14.5. Analyses of three examples, 380
14.5.1. The SCC data, 380
14.5.2. The gas furnace data, 383
14.5.3. The census housing data, 387
14.6. Structural analysis of multivariate time series, 392
14.6.1. A canonical analysis of multiple time series, 395
CONTENTS

14.7. Scalar component models in multiple time series, 396
 14.7.1. Scalar component models, 398
 14.7.2. Exchangeable models and overparameterization, 400.
 14.7.3. Model specification via canonical correlation analysis, 402
 14.7.4. An illustrative example, 403
 14.7.5. Some further remarks, 404

15. Cointegration in the VAR Model 408
 S. Johansen

 15.1. Introduction, 408
 15.1.1. Basic definitions, 409
 15.2. Solving autoregressive equations, 412
 15.2.1. Some examples, 412
 15.2.2. An inversion theorem for matrix polynomials, 414
 15.2.3. Granger's representation, 417
 15.2.4. Prediction, 419
 15.3. The statistical model for \(I(1) \) variables, 420
 15.3.1. Hypotheses on cointegrating relations, 421
 15.3.2. Estimation of cointegrating vectors and calculation of test statistics, 422
 15.3.3. Estimation of \(\beta \) under restrictions, 426
 15.4. Asymptotic theory, 426
 15.4.1. Asymptotic results, 427
 15.4.2. Test for cointegrating rank, 427
 15.4.3. Asymptotic distribution of \(\hat{\beta} \) and test for restrictions on \(\beta \), 429
 15.5. Various applications of the cointegration model, 432
 15.5.1. Rational expectations, 432
 15.5.2. Arbitrage pricing theory, 433
 15.5.3. Seasonal cointegration, 433

16. Identification of Linear Dynamic Multiinput/Multioutput Systems 436
 M. Deistler

 16.1. Introduction and problem statement, 436
 16.2. Representations of linear systems, 438
 16.2.1. Input/output representations, 438
16.2.2. Solutions of linear vector difference equations (VDEs), 440
16.2.3. ARMA and state-space representations, 441
16.3. The structure of state-space systems, 443
16.4. The structure of ARMA systems, 444
16.5. The realization of state-space systems, 445
 16.5.1. General structure, 445
 16.5.2. Echelon forms, 447
16.6. The realization of ARMA systems, 448
16.7. Parametrization, 449
16.8. Estimation of real-valued parameters, 452
16.9. Dynamic specification, 454

INDEX