Phonons in Nanostructures

Michael A. Stroscio and Mitra Dutta
US Army Research Office, US Army Research Laboratory
Contents

Preface xi

Chapter 1 Phonons in nanostructures 1
1.1 Phonon effects: fundamental limits on carrier mobilities and dynamical processes 1
1.2 Tailoring phonon interactions in devices with nanostructure components 3

Chapter 2 Phonons in bulk cubic crystals 6
2.1 Cubic structure 6
2.2 Ionic bonding – polar semiconductors 6
2.3 Linear-chain model and macroscopic models 7
2.3.1 Dispersion relations for high-frequency and low-frequency modes 8
2.3.2 Displacement patterns for phonons 10
2.3.3 Polaritons 11
2.3.4 Macroscopic theory of polar modes in cubic crystals 14

Chapter 3 Phonons in bulk wurtzite crystals 16
3.1 Basic properties of phonons in wurtzite structure 16
3.2 Loudon model of uniaxial crystals 18
3.3 Application of Loudon model to III-V nitrides 23

Chapter 4 Raman properties of bulk phonons 26
4.1 Measurements of dispersion relations for bulk samples 26
4.2 Raman scattering for bulk zincblende and wurtzite structures 26
4.2.1 Zincblende structures 28
4.2.2 Würtzite structures 29
4.3 Lifetimes in zincblende and würtzite crystals 30
4.4 Ternary alloys 32
4.5 Coupled plasmon-phonon modes 33

Chapter 5 Occupation number representation 35
5.1 Phonon mode amplitudes and occupation numbers 35
5.2 Polar-optical phonons: Fröhlich interaction 40
5.3 Acoustic phonons and deformation-potential interaction 43
5.4 Piezoelectric interaction 43

Chapter 6 Anharmonic coupling of phonons 45
6.1 Non-parabolic terms in the crystal potential for ionically bonded atoms 45
6.2 Klemens' channel for the decay process $LO \rightarrow LA(1) + LA(2)$ 46
6.3 LO phonon lifetime in bulk cubic materials 47
6.4 Phonon lifetime effects in carrier relaxation 48
6.5 Anharmonic effects in würtzite structures: the Ridley channel 50

Chapter 7 Continuum models for phonons 52
7.1 Dielectric continuum model of phonons 52
7.2 Elastic continuum model of phonons 56
7.3 Optical modes in dimensionally confined structures 60
7.3.1 Dielectric continuum model for slab modes: normalization of interface modes 61
7.3.2 Electron-phonon interaction for slab modes 66
7.3.3 Slab modes in confined würtzite structures 71
7.3.4 Transfer matrix model for multi-heterointerface structures 79
7.4 Comparison of continuum and microscopic models for phonons 90
7.5 Comparison of dielectric continuum model predictions with Raman measurements 93
7.6 Continuum model for acoustic modes in dimensionally confined structures 97
7.6.1 Acoustic phonons in a free-standing and unconstrained layer 97
7.6.2 Acoustic phonons in double-interface heterostructures 100
7.6.3 Acoustic phonons in rectangular quantum wires 105
7.6.4 Acoustic phonons in cylindrical structures 111
7.6.5 Acoustic phonons in quantum dots 124
Chapter 8 **Carrier–LO-phonon scattering** 131

8.1 Fröhlich potential for LO phonons in bulk zincblende and wurtzite
 structures 131

8.1.1 *Scattering rates in bulk zincblende semiconductors* 131

8.1.2 *Scattering rates in bulk wurtzite semiconductors* 136

8.2 Fröhlich potential in quantum wells 140

8.2.1 *Scattering rates in zincblende quantum-well structures* 141

8.2.2 *Scattering rates in wurtzite quantum wells* 146

8.3 Scattering of carriers by LO phonons in quantum wires 146

8.3.1 *Scattering rate for bulk LO phonon modes in quantum wires* 146

8.3.2 *Scattering rate for confined LO phonon modes in quantum wires* 150

8.3.3 *Scattering rate for interface-LO phonon modes* 154

8.3.4 *Collective effects and non-equilibrium phonons in polar quantum wires* 162

8.3.5 *Reduction of interface–phonon scattering rates in metal–semiconductor
 structures* 165

8.4 Scattering of carriers and LO phonons in quantum dots 167

Chapter 9 **Carrier–acoustic-phonon scattering** 172

9.1 Carrier–acoustic-phonon scattering in bulk zincblende structures 172

9.1.1 *Deformation-potential scattering in bulk zincblende structures* 172

9.1.2 *Piezoelectric scattering in bulk semiconductor structures* 173

9.2 Carrier–acoustic-phonon scattering in two-dimensional structures 174

9.3 Carrier–acoustic-phonon scattering in quantum wires 175

9.3.1 *Cylindrical wires* 175

9.3.2 *Rectangular wires* 181

Chapter 10 **Recent developments** 186

10.1 Phonon effects in intersubband lasers 186

10.2 Effect of confined phonons on gain of intersubband lasers 195

10.3 Phonon contribution to valley current in double-barrier structures 202

10.4 Phonon-enhanced population inversion in asymmetric double-barrier quantum-well
 lasers 205

10.5 Confined-phonon effects in thin film superconductors 208

10.6 Generation of acoustic phonons in quantum-well structures 212

Chapter 11 **Concluding considerations** 218

11.1 Pervasive role of phonons in modern solid-state devices 218

11.2 Future trends: phonon effects in nanostructures and phonon engineering 219
Appendices 221
Appendix A: Huang–Born theory 221
Appendix B: Wendler’s theory 222
Appendix C: Optical phonon modes in double-heterointerface structures 225
Appendix D: Optical phonon modes in single- and double-heterointerface wurtzite structures 236
Appendix E: Fermi golden rule 250
Appendix F: Screening effects in a two-dimensional electron gas 252

References 257
Index 271