Diffusion and Reactions in Fractals and Disordered Systems

Daniel ben-Avraham
Clarkson University

and

Shlomo Havlin
Bar-Ilan University
Preface

Part one: Basic concepts

1 Fractals
 1.1 Deterministic fractals
 1.2 Properties of fractals
 1.3 Random fractals
 1.4 Self-affine fractals
 1.5 Exercises
 1.6 Open challenges
 1.7 Further reading

2 Percolation
 2.1 The percolation transition
 2.2 The fractal dimension of percolation
 2.3 Structural properties
 2.4 Percolation on the Cayley tree and scaling
 2.5 Exercises
 2.6 Open challenges
 2.7 Further reading

3 Random walks and diffusion
 3.1 The simple random walk
 3.2 Probability densities and the method of characteristic functions
 3.3 The continuum limit: diffusion
 3.4 Einstein’s relation for diffusion and conductivity
 3.5 Continuous-time random walks
 3.6 Exercises
3.7 Open challenges 44
3.8 Further reading 45

4 Beyond random walks 46
4.1 Random walks as fractal objects 46
4.2 Anomalous continuous-time random walks 47
4.3 Lévy flights and Lévy walks 48
4.4 Long-range correlated walks 50
4.5 One-dimensional walks and landscapes 53
4.6 Exercises 55
4.7 Open challenges 55
4.8 Further reading 56

Part two: Anomalous diffusion 57

5 Diffusion in the Sierpinski gasket 59
5.1 Anomalous diffusion 59
5.2 The first-passage time 61
5.3 Conductivity and the Einstein relation 63
5.4 The density of states: fractons and the spectral dimension 65
5.5 Probability densities 67
5.6 Exercises 70
5.7 Open challenges 71
5.8 Further reading 72

6 Diffusion in percolation clusters 74
6.1 The analogy with diffusion in fractals 74
6.2 Two ensembles 75
6.3 Scaling analysis 77
6.4 The Alexander–Orbach conjecture 79
6.5 Fractons 82
6.6 The chemical distance metric 83
6.7 Diffusion probability densities 87
6.8 Conductivity and multifractals 89
6.9 Numerical values of dynamical critical exponents 92
6.10 Dynamical exponents in continuum percolation 92
6.11 Exercises 94
6.12 Open challenges 95
6.13 Further reading 96

7 Diffusion in loopless structures 98
7.1 Loopless fractals 98
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>The relation between transport and structural exponents</td>
<td>101</td>
</tr>
<tr>
<td>7.3</td>
<td>Diffusion in lattice animals</td>
<td>103</td>
</tr>
<tr>
<td>7.4</td>
<td>Diffusion in DLAs</td>
<td>104</td>
</tr>
<tr>
<td>7.5</td>
<td>Diffusion in combs with infinitely long teeth</td>
<td>106</td>
</tr>
<tr>
<td>7.6</td>
<td>Diffusion in combs with varying teeth lengths</td>
<td>108</td>
</tr>
<tr>
<td>7.7</td>
<td>Exercises</td>
<td>110</td>
</tr>
<tr>
<td>7.8</td>
<td>Open challenges</td>
<td>112</td>
</tr>
<tr>
<td>7.9</td>
<td>Further reading</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>Disordered transition rates</td>
<td>114</td>
</tr>
<tr>
<td>8.1</td>
<td>Types of disorder</td>
<td>114</td>
</tr>
<tr>
<td>8.2</td>
<td>The power-law distribution of transition rates</td>
<td>117</td>
</tr>
<tr>
<td>8.3</td>
<td>The power-law distribution of potential barriers and wells</td>
<td>118</td>
</tr>
<tr>
<td>8.4</td>
<td>Barriers and wells in strips ((n \times \infty)) and in (d \geq 2)</td>
<td>119</td>
</tr>
<tr>
<td>8.5</td>
<td>Barriers and wells in fractals</td>
<td>121</td>
</tr>
<tr>
<td>8.6</td>
<td>Random transition rates in one dimension</td>
<td>122</td>
</tr>
<tr>
<td>8.7</td>
<td>Exercises</td>
<td>124</td>
</tr>
<tr>
<td>8.8</td>
<td>Open challenges</td>
<td>125</td>
</tr>
<tr>
<td>8.9</td>
<td>Further reading</td>
<td>126</td>
</tr>
<tr>
<td>9</td>
<td>Biased anomalous diffusion</td>
<td>127</td>
</tr>
<tr>
<td>9.1</td>
<td>Delay in a tooth under bias</td>
<td>128</td>
</tr>
<tr>
<td>9.2</td>
<td>Combs with exponential distributions of teeth lengths</td>
<td>129</td>
</tr>
<tr>
<td>9.3</td>
<td>Combs with power-law distributions of teeth lengths</td>
<td>131</td>
</tr>
<tr>
<td>9.4</td>
<td>Topological bias in percolation clusters</td>
<td>132</td>
</tr>
<tr>
<td>9.5</td>
<td>Cartesian bias in percolation clusters</td>
<td>133</td>
</tr>
<tr>
<td>9.6</td>
<td>Bias along the backbone</td>
<td>135</td>
</tr>
<tr>
<td>9.7</td>
<td>Time-dependent bias</td>
<td>136</td>
</tr>
<tr>
<td>9.8</td>
<td>Exercises</td>
<td>138</td>
</tr>
<tr>
<td>9.9</td>
<td>Open challenges</td>
<td>139</td>
</tr>
<tr>
<td>9.10</td>
<td>Further reading</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>Excluded-volume interactions</td>
<td>141</td>
</tr>
<tr>
<td>10.1</td>
<td>Tracer diffusion</td>
<td>141</td>
</tr>
<tr>
<td>10.2</td>
<td>Tracer diffusion in fractals</td>
<td>143</td>
</tr>
<tr>
<td>10.3</td>
<td>Self-avoiding walks</td>
<td>144</td>
</tr>
<tr>
<td>10.4</td>
<td>Flory’s theory</td>
<td>146</td>
</tr>
<tr>
<td>10.5</td>
<td>SAWs in fractals</td>
<td>148</td>
</tr>
<tr>
<td>10.6</td>
<td>Exercises</td>
<td>151</td>
</tr>
<tr>
<td>10.7</td>
<td>Open challenges</td>
<td>152</td>
</tr>
<tr>
<td>10.8</td>
<td>Further reading</td>
<td>153</td>
</tr>
</tbody>
</table>
Part three: Diffusion-limited reactions 155

11 Classical models of reactions 157
11.1 The limiting behavior of reaction processes 157
11.2 Classical rate equations 159
11.3 Kinetic phase transitions 161
11.4 Reaction–diffusion equations 163
11.5 Exercises 164
11.6 Open challenges 166
11.7 Further reading 166

12 Trapping 167
12.1 Smoluchowski’s model and the trapping problem 167
12.2 Long-time survival probabilities 168
12.3 The distance to the nearest surviving particle 171
12.4 Mobile traps 174
12.5 Imperfect traps 174
12.6 Exercises 175
12.7 Open challenges 176
12.8 Further reading 177

13 Simple reaction models 179
13.1 One-species reactions: scaling and effective rate equations 179
13.2 Two-species annihilation: segregation 182
13.3 Discrete fluctuations 185
13.4 Other models 187
13.5 Exercises 189
13.6 Open challenges 189
13.7 Further reading 190

14 Reaction–diffusion fronts 192
14.1 The mean-field description 192
14.2 The shape of the reaction front in the mean-field approach 194
14.3 Studies of the front in one dimension 195
14.4 Reaction rates in percolation 196
14.5 $A + B_{\text{static}} \rightarrow C$ with a localized source of A particles 200
14.6 Exercises 201
14.7 Open challenges 202
14.8 Further reading 203
Part four: Diffusion-limited coalescence: an exactly solvable model 205

15 Coalescence and the IPDF method 207
15.1 The one-species coalescence model 207
15.2 The IPDF method 208
15.3 The continuum limit 211
15.4 Exact evolution equations 212
15.5 The general solution 213
15.6 Exercises 215
15.7 Open challenges 216
15.8 Further reading 216

16 Irreversible coalescence 217
16.1 Simple coalescence, \(A + A \rightarrow A \) 217
16.2 Coalescence with input 222
16.3 Rate equations 223
16.4 Exercises 227
16.5 Open challenges 228
16.6 Further reading 228

17 Reversible coalescence 229
17.1 The equilibrium steady state 229
17.2 The approach to equilibrium: a dynamical phase transition 231
17.3 Rate equations 233
17.4 Finite-size effects 234
17.5 Exercises 236
17.6 Open challenges 237
17.7 Further reading 237

18 Complete representations of coalescence 238
18.1 Inhomogeneous initial conditions 238
18.2 Fisher waves 240
18.3 Multiple-point correlation functions 243
18.4 Shielding 245
18.5 Exercises 247
18.6 Open challenges 247
18.7 Further reading 248

19 Finite reaction rates 249
19.1 A model for finite coalescence rates 249
19.2 The approximation method 250
19.3 Kinetics crossover 251
19.4 Finite-rate coalescence with input 254
Contents

19.5 Exercises 256
19.6 Open challenges 257
19.7 Further reading 257

Appendix A The fractal dimension 258
Appendix B The number of distinct sites visited by random walks 260
Appendix C Exact enumeration 263
Appendix D Long-range correlations 266

References 272

Index 313