Contents

Preface XI

List of Contributors XIII

Abbreviations and Symbols XVII

1 Approaches to a Molecular Switch Using Photoinduced Electron and Energy Transfer 1

1.1 Introduction 1

1.2 Systems Consisting of Single Molecules 3

1.2.1 Two-level Systems 3

1.3 Systems Consisting of Multiple Chromophores 7

1.3.1 Intramolecular Electron Transfer 7

1.3.2 Intramolecular Energy Transfer 17

1.4 Conclusions and Future Prospects 30

2 Photoswitchable Molecular Systems Based on Diarylenes 37

2.1 Introduction 37

2.2 Basic Diarylene Photochromic Performance 38

2.2.1 Fatigue Resistance Characteristic 39

2.2.2 Thermal Irreversibility 43

2.2.3 Response Time 44

2.3 Host–Guest Interactions 47

2.4 Photoelectrochemical Switching 50

2.5 Liquid Crystalline Switches 54

2.6 Photooptical Switching – Refractive Index Change 55

2.7 Conclusion 60

3 Optoelectronic Molecular Switches Based on Dihydroazulene-Vinylheptafulvene (DHA-VHF) 63

3.1 Introduction 63

3.2 Photochromic Molecular Switches 67

3.2.1 Molecular Switches Based on Fulgides 68
6 Photochemical Biomolecular Switches: The Route to Optobioelectronics 165

6.1 Introduction 165

6.1.1 Reversible Photochemical Switching of Biomaterial Functions 167

6.1.1.1 Photoswitchable Biomaterial Functions through Tethering of Photosomerizable Units to Proteins 168

6.1.1.2 Photoswitchable Biomaterials by Integration of Biomaterials with Photosomerizable Matrices and Microenvironments 178

6.2 Electronic Transduction of Photoswitchable Redox Functions of Biomaterials 185

6.2.1 Amperometric Transduction of Optical Signals Recorded by Photosomerizable Enzyme Electrodes 187

6.2.2 Light-Switchable Activation of Redox Proteins by Means of Photosomerizable “Command Interfaces” Associated with Electrodes 191

6.3 Electronic Transduction of Photoswitchable Antigen–Antibody Interactions at Solid Supports 197

6.4 Complex Photochemical Biomolecular Switches 204

6.5 Applications of Photoswitchable Biomaterials 208

6.6 Conclusions and Future Perspectives 213

7 Switchable Catenanes and Molecular Shuttles 219

7.1 Introduction 219

7.2 Catenanes and Rotaxanes Containing Transition Metals 220

7.3 Catenanes and Rotaxanes Containing -Electron-deficient and -Electron-rich Recognition Sites 226

7.4 Rotaxanes Containing Cyclodextrins 237

7.5 Molecule-based Logic Gates 239

7.6 Conclusions 243

8 Metallo-Rotaxanes and Catenanes as Redox Switches: Towards Molecular Machines and Motors 249

8.1 Introduction 249

8.1.1 Generalities Regarding Machines and Motors 249

8.1.2 Proteins Undergoing Folding–Defolding Processes 249

8.1.3 Biological Molecular Motors 250

8.1.4 Previously Described Synthetic Systems based on Purely Organic Components 252

8.1.5 Motion in Transition Metal-based Molecules 252

8.2 Rotaxanes Containing Transition Metals: From Electronic to Molecular Motion 254

8.2.1 Photoinduced Intramolecular Electron Transfer Within Porphyrinic Rotaxanes 254

8.2.2 Lateral Translation of a Ring on the Molecular String on which it is Threaded: Electrochemically-driven Motion 257
8.2.3 Towards Rotary Motors: Pirouetting of a Two-coordinate Ring on its Thread 264
8.2.3.1 Electrochemical Behavior of Chemically Isolated 16(4)+ and 16(5)2+ 268
8.3 Electrochemically Driven Ring Gliding Motion in Catenanes 271
8.3.1 A Twin-geometry Catenane 271
8.3.2 A Triplet-configuration Copper Catenane 273
8.4 Conclusion and Prospects 276

9 Switchable Molecular Receptors and Recognition Processes: From Photoresponsive Crown Ethers to Allosteric Sugar Sensing Systems 281
9.1 Introduction: Why is the Switch Function Indispensable in Molecular Receptors? 281
9.2 The Origination of Photoresponsive Crown Ethers 283
9.3 Dynamic Actions of Calixarenes in Ion and Molecule Recognition 287
9.4 Artificial Sugar-sensing Systems utilizing Photoinduced Electron Transfer (PET) 291
9.5 Dynamic and Efficient Guest-binding Achieved through Allosteric Effects 297
9.5.1 Negative Heterotropic Systems 297
9.5.2 Positive Heterotropic Systems 299
9.5.3 Negative Homotropic Systems 301
9.5.4 Positive Homotropic Systems 302
9.6 Concluding Remarks 304

10 Multistate/Multifunctional Molecular-level Systems – Photochromic Flavylium Compounds 309
10.1 Introduction 309
10.2 Multistate/Multifunctional Compounds 310
10.3 Natures of the Species involved in the Chemistry of Flavylium Compounds 312
10.4 Thermal Reactions of the 4'-Methoxyflavylium Ion 314
10.5 Photochemical Behavior of the 4'-Methoxyflavylium Ion 315
10.5.1 Continuous Irradiation 315
10.5.2 Pulsed Irradiation 317
10.6 Flavylium Ions with OH Substituents 318
10.7 Energy Level Diagrams 319
10.8 Chemical Process Networks 323
10.8.1 Write-lock-read-unlock-erase Cycles 323
10.8.2 Reading without Writing in a Write-lock-read-unlock-erase Cycle 325
10.8.3 Micelle Effect on the Write-lock-read-unlock-erase Cycle 327
10.8.4 Permanent and Temporary Memories 328
10.8.5 Oscillating Absorbance Patterns 329
10.8.6 Color-tap Effect 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 Photomodulation of Polypeptide Macromolecular Structure</td>
<td>404</td>
</tr>
<tr>
<td>13.2.1 UV Light-induced Conformational Transitions in</td>
<td></td>
</tr>
<tr>
<td>Azobenzene-containing Polypeptides</td>
<td>404</td>
</tr>
<tr>
<td>13.2.1.2 Azobenzene-containing Poly(L-glutamic acid)</td>
<td>405</td>
</tr>
<tr>
<td>13.2.1.3 Azobenzene-containing Poly(L-lysine)</td>
<td>410</td>
</tr>
<tr>
<td>13.2.1.4 Azo-Modified Polypeptide Analogues of Poly(L-lysine)</td>
<td>414</td>
</tr>
<tr>
<td>13.2.1.5 Photoinduced Helix-sense Reversal in Azobenzene-containing</td>
<td></td>
</tr>
<tr>
<td>Poly(L-aspartate)s</td>
<td>415</td>
</tr>
<tr>
<td>13.2.1.6 Other Photochromic Polypeptide Systems</td>
<td>418</td>
</tr>
<tr>
<td>13.2.2 Sunlight-induced Conformational Transitions in</td>
<td></td>
</tr>
<tr>
<td>Spiropyran-containing Polypeptides</td>
<td>419</td>
</tr>
<tr>
<td>13.2.2.1 Spiropyran-modified Poly(L-glutamate)s</td>
<td></td>
</tr>
<tr>
<td>13.2.2.2 Photoresponsiveness of Poly(spiropyran-L-glutamate) under</td>
<td></td>
</tr>
<tr>
<td>Acidic Conditions</td>
<td>421</td>
</tr>
<tr>
<td>13.2.2.3 Spiropyran-modified Poly(L-lysine)</td>
<td>423</td>
</tr>
<tr>
<td>13.2.3 Photostimulated Aggregation-disaggregation Effects</td>
<td>426</td>
</tr>
<tr>
<td>13.3 Photoeffects in Molecular and Thin Films</td>
<td>428</td>
</tr>
<tr>
<td>13.3.1 Photomechanical Effects in Monolayers</td>
<td>428</td>
</tr>
<tr>
<td>13.3.2 Photoresponsive LB and Thin Films</td>
<td>431</td>
</tr>
<tr>
<td>13.4 Photoresponsive Polypeptide Membranes</td>
<td>433</td>
</tr>
<tr>
<td>13.5 Summary and Future Prospects</td>
<td>437</td>
</tr>
</tbody>
</table>

Index 443