Contents

GETTING STARTED: INTRODUCTORY CONCEPTS AND DEFINITIONS 1
1.1 Using Thermodynamics 1
1.2 Defining Systems 1
1.3 Describing Systems and Their Behavior 5
1.4 Measuring Mass, Length, Time, and Force 8
1.5 Two Measurable Properties: Specific Volume and Pressure 12
1.6 Measuring Temperature 16
1.7 Engineering Design and Analysis 22
1.8 How To Use This Book Effectively 26
1.9 Chapter Summary and Study Guide 27

ENERGY AND THE FIRST LAW OF THERMODYNAMICS 35
2.1 Reviewing Mechanical Concepts of Energy 35
2.2 Evaluating Energy Transfer By Work 39
2.3 Energy of a System 50
2.4 Energy Transfer By Heat 53
2.5 Energy Accounting: Energy Balance for Closed Systems 57
2.6 Energy Analysis of Cycles 69
2.7 Chapter Summary and Study Guide 72

EVALUATING PROPERTIES 83
3.1 Fixing the State 83

EVALUATING PROPERTIES: GENERAL CONSIDERATIONS 84
3.2 \(p-v-T \) Relation 84
3.3 Retrieving Thermodynamic Properties 91
3.4 Generalized Compressibility Chart 110

EVALUATING PROPERTIES USING THE IDEAL GAS MODEL 116
3.5 Ideal Gas Model 117
3.6 Internal Energy, Enthalpy, and Specific Heats of Ideal Gases 119
3.7 Evaluating \(\Delta u \) and \(\Delta h \) of Ideal Gases 122
3.8 Polytropic Process of an Ideal Gas 130
3.9 Chapter Summary and Study Guide 132
VAPOR POWER SYSTEMS 372
8.1 Modeling Vapor Power Systems 372
8.2 Analyzing Vapor Power Systems—Rankine Cycle 374
8.3 Improving Performance—Superheat and Reheat 387
8.4 Improving Performance—Regenerative Vapor Power Cycle 393
8.5 Other Vapor Cycle Aspects 404
8.6 Case Study: Exergy Accounting of a Vapor Power Plant 406
8.7 Chapter Summary and Study Guide 414

GAS POWER SYSTEMS 425
INTERNAL COMBUSTION ENGINES 425
9.1 Engine Terminology 425
9.2 Air-Standard Otto Cycle 428
9.3 Air-Standard Diesel Cycle 433
9.4 Air-Standard Dual Cycle 437

GAS TURBINE POWER PLANTS 440
9.5 Modeling Gas Turbine Power Plants 440
9.6 Air-Standard Brayton Cycle 441
9.7 Regenerative Gas Turbines 452
9.8 Regenerative Gas Turbines with Reheat and Intercooling 457
9.9 Gas Turbines for Aircraft Propulsion 468
9.10 Combined Gas Turbine—Vapor Power Cycle 473
9.11 Ericsson and Stirling Cycles 479

COMPRESSIBLE FLOW THROUGH NOZZLES AND DIFFUSERS 480
9.12 Compressible Flow Preliminaries 480
9.13 One-Dimensional Steady Flow in Nozzles and Diffusers 485
9.14 Flow in Nozzles and Diffusers of Ideal Gases with Constant Specific Heats 491
9.15 Chapter Summary and Study Guide 499

REFRIGERATION AND HEAT PUMP SYSTEMS 514
10.1 Vapor Refrigeration Systems 514
10.2 Analyzing Vapor-Compression Refrigeration Systems 517
10.3 Refrigerant Properties 526
10.4 Cascade and Multistage Vapor-Compression Systems 527
10.5 Absorption Refrigeration 529
10.6 Heat Pump Systems 531
10.7 Gas Refrigeration Systems 534
10.8 Chapter Summary and Study Guide 541
11 THERMODYNAMIC RELATIONS 551

11.1 Using Equations of State 551
11.2 Important Mathematical Relations 558
11.3 Developing Property Relations 562
11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy 568
11.5 Other Thermodynamic Relations 578
11.6 Constructing Tables of Thermodynamic Properties 584
11.7 Generalized Charts for Enthalpy and Entropy 589
11.8 p-v-T Relations for Gas Mixtures 595
11.9 Analyzing Multicomponent Systems 600
11.10 Chapter Summary and Study Guide 613

12 IDEAL GAS MIXTURES AND PSYCHROMETRICS 625

IDEAL GAS MIXTURES: GENERAL CONSIDERATIONS 625
12.1 Describing Mixture Composition 625
12.2 Relating p, V, and T for Ideal Gas Mixtures 630
12.3 Evaluating U, H, S and Specific Heats 632
12.4 Analyzing Systems Involving Mixtures 633

PSYCHROMETRIC APPLICATIONS 647
12.5 Introducing Psychrometric Principles 647
12.6 Applying Mass and Energy Balances to Air-Conditioning Systems 655
12.7 Adiabatic-Saturation and Wet-Bulb Temperatures 660
12.8 Psychrometric Charts 664
12.9 Analyzing Air-Conditioning Processes 667
12.10 Chapter Summary and Study Guide 683

13 REACTING MIXTURES AND COMBUSTION 696

COMBUSTION FUNDAMENTALS 696
13.1 Introducing Combustion 696
13.2 Conservation of Energy—Reacting Systems 705
13.3 Determining the Adiabatic Flame Temperature 718
13.4 Absolute Entropy and the Third Law of Thermodynamics 722
13.5 Fuel Cells 731

CHEMICAL EXERGY 732
13.6 Introducing Chemical Exergy 732
13.7 Standard Chemical Exergy 736
13.8 Exergy Summary 741
13.9 Exergetic (Second Law) Efficiencies of Reacting Systems 744
13.10 Chapter Summary and Study Guide 748
CHEMICAL AND PHASE EQUILIBRIUM 760

EQUILIBRIUM FUNDAMENTALS 760
14.1 Introducing Equilibrium Criteria 760

CHEMICAL EQUILIBRIUM 765
14.2 Equation of Reaction Equilibrium 765
14.3 Calculating Equilibrium Compositions 767
14.4 Further Examples of the Use of the Equilibrium Constant 776

PHASE EQUILIBRIUM 786
14.5 Equilibrium Between Two Phases of a Pure Substance 786
14.6 Equilibrium of Multicomponent, Multiphase Systems 788
14.7 Chapter Summary and Study Guide 793

APPENDIX TABLES, FIGURES, AND CHARTS 802
Index to Tables in SI Units 802
Index to Tables in English Units 850
Index to Figures and Charts 898

ANSWERS TO SELECTED PROBLEMS 913

INDEX 918