Contents

List of Contributors xiii
Preface xv

Chapter 1
An Introduction to Modelling Methodology
Claudio Cobelli and Ewart Carson

1.1 Introduction 1
1.2 The Need for Models 2
1.3 Approaches to Modelling 4
1.4 Simulation 7
1.5 Model Identification 8
1.6 Model Validation 11
1.7 Reference 13

Chapter 2
Control in Physiology And Medicine
Ewart Carson, Tom Hennessy, and Abdul Roudsari

2.1 Introduction 15
2.2 A Systems and Control Approach 15
2.3 Control Mechanisms in Physiology 17
2.4 Control System Representations of the Clinical Process 24
2.5 Control System Approaches to Drug Therapy Planning and Administration 35
Chapter 3
Deconvolution

Giovanni Sparacino, Giuseppe De Nicolao, and Claudio Cobelli

3.1 Introduction 45
3.2 Problem Statement 46
3.3 Difficulty of the Deconvolution Problem 49
3.4 The Regularization Method 54
3.5 Other Deconvolution Methods 68
3.6 Conclusions 71
3.7 Acknowledgements 72
3.8 References 72

Chapter 4
A priori Identifiability of Physiological Parametric Models

Maria Pia Saccomani, Leontina D’Angio’, Stefania Audoly, and Claudio Cobelli

4.1 Introduction 77
4.2 The System-Experiment Model 79
4.3 A Priori Identifiability 80
4.4 Available Methods 81
4.5 An Identifiability Algorithm for Nonlinear Models 85
4.6 An Identifiability Algorithm for Linear Compartmental Models 93
4.7 Conclusions 100
4.8 References 101

Appendix A: The Characteristic Set 103
Appendix B: THE Gröbner Basis 104

Chapter 5
Parameter Estimation

Roman Hovorka and Paolo Vicini

5.1 Introduction 107
5.2 Least Squares and Maximum Likelihood Estimators 108
Contents

5.3 Bayesian Estimator \hspace{1cm} 126
5.4 Population Kinetic Analysis \hspace{1cm} 136
5.5 Acknowledgement \hspace{1cm} 148
5.6 References \hspace{1cm} 148

Chapter 6

Tracer Experiment Design for Metabolic Fluxes Estimation in Steady and Nonsteady State
Andrea Caumo and Claudio Cobelli

6.1 Introduction \hspace{1cm} 153
6.2 Fundamentals \hspace{1cm} 153
6.3 Accessible-Pool and System Fluxes \hspace{1cm} 156
6.4 The Tracer Probe \hspace{1cm} 158
6.5 Estimation of Tracee Fluxes in Steady State \hspace{1cm} 160
6.6 Estimation of Nonsteady-State Fluxes \hspace{1cm} 165
6.7 Conclusions \hspace{1cm} 176
6.8 References \hspace{1cm} 177

Chapter 7

Physiological Modelling of Positron Emission Tomography Images
Alessandra Bertoldo and Claudio Cobelli

7.1 Introduction \hspace{1cm} 179
7.2 Modeling Strategies \hspace{1cm} 180
7.3 Positron Emission Tomography Measurement Error \hspace{1cm} 182
7.4 Models of Regional Glucose Metabolism \hspace{1cm} 185
7.5 Models of \([^{15}\text{O}]\text{H}_2\text{O}\) Kinetics to Assess Blood Flow \hspace{1cm} 195
7.6 Models of the Ligand-Receptor System \hspace{1cm} 199
7.7 Conclusions \hspace{1cm} 207
7.8 References \hspace{1cm} 208

Chapter 8

Identification and Physiological Interpretation of Aortic Impedance in Modelling
Roberto Burattini
8.1 Introduction 213
8.2 The Modelling Process and Related Problems of Identifiability and Determinacy 216
8.3 Vascular Impedance 217
8.4 Data-Driven Models of Vascular Impedance (Frequency Response Technique) 221
8.5 Historical Development of Windkessel Models 222
8.6 Where Windkessel Models' Identification Meets Physiological Interpretation 228
8.7 Contradictions in Clinically Oriented Compliance Estimation Methods (How the Viscoelastic Windkessel Resolves them) 231
8.8 Distributed Description of Linear Arterial Systems to Infer Aortic Wave Reflection 235
8.9 Identifiability: A Key Issue in the Assessment of Physiological Relevance of T-Tube Model 242
8.10 Conclusions 247
8.11 References 248

Chapter 9
Mathematical Modelling of Pulmonary Gas Exchange
Stephen E. Rees, Søren Kjærgaard, and Steen Andreassen

9.1 Standard Equations Used to Describe Gas Transport in the Lungs 253
9.2 Models of Diffusion Limitation 258
9.3 Models of Ventilation Perfusion Mismatch 266
9.4 Application of Mathematical Models of Ventilation, Perfusion, and Diffusion 269
9.5 References 273
Appendix A: Glossary 276
Appendix B: Calculations Necessary to Convert Inspired Gas at ATPD to BTPS 277

Chapter 10
Mathematical Models of Respiratory Mechanics
Gianluca Nucci and Claudio Cobelli

10.1 Introduction 279
10.2 Breathing Mechanics: Basic Concepts 280
Chapter 11
Insulin Modelling
Gianna Maria Toffolo

11.1 Introduction 305
11.2 Models of Whole-body Insulin Kinetics 306
11.3 An Organ Model of Insulin Secretion 310
11.4 Estimation of Insulin Secretion by Deconvolution 320
11.5 A Structural Model to Estimate Insulin Secretion and Secretory Indices 321
11.6 Estimation of Hepatic Insulin Extraction 329
11.7 Conclusions 331
11.8 References 333

Chapter 12
Glucose Modeling
Andrea Caumo, Monica Simeoni, Claudio Cobelli

12.1 Introduction 337
12.2 Models of Whole-body Kinetics in Steady State 337
12.3 Models of Regional Kinetics in Steady State 346
12.4 Models of Whole-body Kinetics in Nonsteady State 351
12.5 Models of Glucose and Insulin Control on Glucose Metabolism 359
12.6 Simulation Models 366
12.7 Conclusions 369
12.8 References 370

Chapter 13
Blood-Tissue Exchange Modelling
Paolo Vicini