Contents

1 Matrix and operator conventions 1
 1.1 Matrices and matrix coefficients 1
 1.2 Schatten matrix norms 7
 1.3 Matrices of operators 10

I Examples and Three Basic Theorems

2 The representation theorem 19
 2.1 Concrete and abstract operator spaces 19
 2.2 Completely bounded linear mappings 23
 2.3 The representation theorem 28
 2.4 Notes and references 35

3 Constructions and examples 37
 3.1 Subspaces, quotients, products, and conjugates 37
 3.2 Dual spaces and mapping spaces 40
 3.3 The min and max quantizations 47
 3.4 Column and row Hilbert operator spaces 54
 3.5 Pisier's self-dual Hilbert operator spaces 60
 3.6 Notes and references 63

4 The extension theorem 65
 4.1 The Arveson–Wittstock theorem and injectivity 65
 4.2 Duality for subspaces and quotients 74
 4.3 Notes and references 76

5 Operator systems and decompositions 77
 5.1 Operator systems and complete positivity 77
 5.2 The Stinespring theorem and its consequences 83
 5.3 Decompositions of complete contractions 86
 5.4 Decomposability 93
 5.5 Matrix convexity and the trace class operators 101
 5.6 Notes and references 103
6 Injectivity
 6.1 The injective operator spaces 105
 6.2 Injective envelopes 113
 6.3 Notes and references 116

II Tensor Products

7 The projective tensor product
 7.1 Definition and elementary properties 123
 7.2 Trace class operators and a Fubini theorem 132
 7.3 Notes and references 136

8 The injective tensor product
 8.1 Definition and elementary properties 137
 8.2 Relating Banach and operator space tensor products 145
 8.3 Notes and references 147

9 The Haagerup tensor product
 9.1 Multiplicatively bounded mappings 149
 9.2 The tensor product and its elementary properties 152
 9.3 Some tensor product computations 160
 9.4 Multilinear decompositions 163
 9.5 Notes and references 173

10 Infinite matrices and asymptotic constructions
 10.1 Infinite matrices over an operator space 175
 10.2 Representing elements of the projective tensor product 183
 10.3 Ultraproducts 184
 10.4 Notes and references 191

III The Grothendieck Programme

11 The approximation property
 11.1 The Grothendieck approximation property 195
 11.2 The operator space approximation property 197
 11.3 Tomiyama's slice mapping property 203
 11.4 Notes and references 206
17 An abstract characterization for non-self-adjoint operator algebras

17.1 Quantized function algebras

17.2 Notes and references

Appendix: Preliminaries

A.1 Linear spaces

A.2 Banach spaces

A.3 Hilbert spaces

A.4 C*-algebras and von Neumann algebras

A.5 A brief list of operator algebras

A.6 Asymptotic products and ultraproducts of Banach spaces

References

Index of Notation

Index