PROPERTIES OF
Silicon Germanium
and SiGe:Carbon

Edited by
ERICH KASPER AND KLARA LYUTOVICH
University of Stuttgart, Germany
Contents

Dedication vii

Introduction by E. Kasper and K. Lyutovich viii

Contributing Authors x

Abbreviations xiii

1 INTRODUCTION 1

1.1 Strain induced morphological evolution of SiGe thin films D.E. Jesson 3
1.2 Equilibrium theories of misfit dislocation networks in the SiGe/Si system R. Hull 9
1.3 Metastable strained layer configurations in the SiGe/Si system R. Hull 21

2 STRUCTURAL PROPERTIES 43

2.1 Crystal structure, lattice parameters and liquidus-solidus curve of the SiGe system H.-J. Herzog 45
2.2 Ordering in SiGe alloys W. Jäger 50
2.3 The Si/Ge interface: structure, energy and interdiffusion G. Theodorou 59
2.4 Self-assembled SiGe nanostructures K. Tillmann, H. Trinkaus and W. Jäger 63
2.5 Structural properties of SiC and SiGeC alloy layers on Si K. Eberl, O.G. Schmidt and R. Duschl 75

3 THERMAL, MECHANICAL AND LATTICE VIBRATIONAL PROPERTIES 89

3.1 Elastic stiffness constants of SiGe S. P. Baker and E. Arzt 91
3.2 Thermoelectric properties of low dimensional SiGe structures K.L. Wang, J.L. Liu, A. Balandin and A. Khitun 94
3.3 Phonon modes in SiGe: Raman spectroscopy K. Brunner 115

4 BAND STRUCTURE 123

4.1 Energy gaps and band structure of SiGe and their temperature dependence C. Penn, T. Fromherz and G. Bauer 125
4.2 Strain effects on the valence-band structure of SiGe C.G. Van de Walle 135
4.3 Strain effects on the conduction-band structure of SiGe C.G. Van de Walle 140
4.4 Effective masses of electrons and holes in SiGe R. Neumann and G. Abstreiter 144
4.5 SiGe heterojunctions and band offsets C.G. Van de Walle 149
4.6 Electronic properties of SiGe alloys R. Duschl, O. G. Schmidt and K. Eberl 158