Global Optimization with Non-Convex Constraints

Sequential and Parallel Algorithms

by

Roman G. Strongin

_Nizhni Novgorod State University,
Nizhni Novgorod, Russia_

and

Yaroslav D. Sergeyev

_Institute of Systems Analysis and Information Technology,
University of Calabria,
Rende, Italy_

and

_Nizhni Novgorod State University,
Nizhni Novgorod, Russia_
CONTENTS

PREFACE xvii

ACKNOWLEDGEMENTS xxvii

Part One GLOBAL OPTIMIZATION
ALGORITHMS AS DECISION PROCEDURES. THEORETICAL BACKGROUND AND CORE UNIVARIATE CASE 1

1 **INTRODUCTION** 3

1.1 Optimization Problems and Search Techniques 3

1.2 A priori Information and Estimates for an Optimum 10

 Role of a priori Information 10

 Unimodality and Local Improvements 11

 Multimodality and Adaptation of Local Techniques 13

 A priori Information and Expansion in Standard Problems 17

 Lipschitz Continuity Assumptions and Global Optimality 19

 Objective Function as a Sample of some Random Function 25

1.3 Decision Rules as Minimax Optimal Strategies 28

 Minimax Approach 29

 One-step Optimality Principle 33
1.4 Information-Statistical Approach and Average Optimality

1.5 Problem of Dimensionality and Reduction to One Dimension
 - Exponential Growth of the Grid Technique Complexity with the Increase of Dimensionality
 - Increasing Complexity of Building Effective Grids in Many Dimensions
 - Reduction to One Dimension

1.6 Constraints and Reduction to Unconstrained Case without Penalties
 - Optimality and Constraints
 - Partial Computability of Problem Functionals
 - Indexes and Compatibility of Constraints
 - Reduction to the Unconstrained Case

2 GLOBAL OPTIMIZATION ALGORITHMS
 AS STATISTICAL DECISION PROCEDURES
 - THE INFORMATION APPROACH

2.1 Estimates for the Global Optimum Based on a Stochastic Description of the Problem
 - A priori Description and Estimates
 - Model for Outcomes of Trials
 - A posteriori Estimates for the Global Optimizer
 - Estimates for the Case of Error-Free Observations

2.2 Approximate Stochastic Estimators for the Global Optimizer
 - Simplified Estimators for the Global Optimizer
 - Sufficient Conditions for Approximation
 - Particular Stochastic Model
 - Bayesian Estimates for Error-Free Observations
 - Bayesian Estimates for Observations Corrupted by Gaussian Errors
2.3 Decision and Termination Rules for Error-Free Observations

Forecasting Outcomes of Trials 78
One-Step Optimal Decisions 82
Termination Rule and the Search Algorithm 84
Randomized Strategies 85

2.4 Decision Rules for Observations Corrupted by additive Non-Biased Gaussian Errors

Forecasting Outcomes of Noise-Corrupted Trials 90
Decision Rule and Convergence Study 93
Numerical Simulation of Search in the Presence of Noise 98

2.5 Estimations and Decisions in Problems of Equation Solving

Stochastic Model and Bayesian Estimates for a Root of an Equation 106
Decision Rule and Convergence Study 113
Root Search Algorithms 121

3 CORE GLOBAL SEARCH ALGORITHM AND CONVERGENCE STUDY

3.1 Global Search Algorithm 127

3.2 Convergence Conditions
Lipschitzian Case 133
Discontinuous Case 138
Smoothing Global Search Algorithm 144

3.3 Rate of Convergence
Density of Trials 149
Sequence Structures in the Ranges of Function Linearity 151
Comparison with the Grid Technique in Ranges of Function Linearity 160

3.4 Termination Criterion and Truncated Sequences 162

3.5 Monotonous Convergence
Monotonous and Nearly Monotonous Convergence 170
Algorithm Adaptively Estimating the Global Lipschitz Constant During the Search 274
Algorithm Adaptively Estimating the Local Lipschitz Constants 277
Convergence Conditions 278
Numerical Examples 284

4.5 Local Tuning and the Relationship between the Information and Geometric Approaches 288
Convergence Conditions and Numerical Examples 291

4.6 Fast Finding the First Root of an Equation by the Methods Using Smooth Bounding Procedures 295
Filters as an Example of Applications Where the Problem Arises 298
Description of the Algorithms 302
Convergence Analysis 309
Numerical Experiments 312

Part Two GENERALIZATIONS FOR PARALLEL COMPUTING, CONSTRAINED AND MULTIPLE CRITERIA PROBLEMS 317

5 PARALLEL GLOBAL OPTIMIZATION ALGORITHMS AND EVALUATION OF THE EFFICIENCY OF PARALLELISM 319
5.1 From Fast Sequential Methods towards Non-Redundant Parallel Algorithms 319
5.2 Information Algorithm with Parallel Trials 324
Decision Rules of the Information Algorithm with Parallel Trials 325
Convergence Conditions 328
Estimates of the Efficiency of Parallelism 332
5.3 Parallel Method for Solving Problems with the Objective Functions Satisfying a Generalized Lipschitz Condition 343
Decision Rules of the Method 344
Global Optimization with Non-Convex Constraints

Reduction to One Dimension 511
Multivariate Index Method 513
Convergence Conditions 523
8.4 Multicriteria Scheme in Many Dimensions 531
8.5 Peano Curves and Local Tuning for Solving Multidimensional Problems 541

9 Multiple Dimensional Parallel Algorithms 551
9.1 Parallel Multidimensional Information Algorithm 552
9.2 Parallel Multidimensional Information Algorithm with Adaptive Local Tuning 558
9.3 Parallel Characteristic Algorithms 566
 Class of Parallel Characteristic Global Optimization Algorithms 566
 Convergence of Parallel Characteristic Algorithms 569
 Conditions of Non-Redundant Parallelization 580
 Numerical Examples 586
9.4 Parallel Asynchronous Global Search and the Nested Optimization Scheme 590
 Nested Optimization Scheme and Parallel Computations 590
 Asynchronous Parallel Algorithm for Univariate Global Optimization Problems 595
 Convergence and Non-Redundancy Conditions 597
 Numerical Examples 604

10 Multiple Peano Scannings and Multidimensional Problems 611
10.1 Metric Properties in One and Many Dimensions: Multiple Shifted Scannings 611
 Reduction to One Dimension and Retaining the Property of Nearness 611
 Multiple Scanning 613
Contents

Metric Properties of Multiple Scannings 616

10.2 Algorithm for Global Multidimensional Constrained Problems Employing Multiple Scannings 621
 Index Method with Multiple Scannings 621
 Convergence Properties 627

10.3 Implementation of Global Optimization Schemes with Multiple Scannings on Multiprocessor Systems 633
 Reduction to a Family of Linked Univariate Problems 633
 Parallel Scheme and Search Algorithm 635
 Convergence Conditions 642

REFERENCES 651

LIST OF ALGORITHMS 679

LIST OF FIGURES 683

LIST OF TABLES 693

INDEX 697