Thin-Film Optical Filters

THIRD EDITION

H A Macleod

Thin Film Center Inc.
Tucson, Arizona

and

Professor Emeritus of Optical Sciences
University of Arizona

Institute of Physics Publishing
Bristol and Philadelphia
Contents

2.15.1 The Herpin index 72
2.15.2 Alternative method of calculation 73
2.15.3 Smith’s method of multilayer design 75
2.15.4 The Smith chart 77
2.15.5 Reflection circle diagrams 80

References 85

3 Antireflection coatings 86
3.1 Antireflection coatings on high-index substrates 87
3.1.1 The single-layer antireflection coating 87
3.1.2 Double-layer antireflection coatings 92
3.1.3 Multilayer coatings 102
3.2 Antireflection coatings on low-index substrates 108
3.2.1 The single-layer antireflection coating 110
3.2.2 Two-layer antireflection coatings 111
3.2.3 Multilayer antireflection coatings 118
3.3 Equivalent layers 135
3.4 Antireflection coatings for two zeros 139
3.5 Antireflection coatings for the visible and the infrared 144
3.6 Inhomogeneous layers 152
3.7 Further information 156
References 156

4 Neutral mirrors and beam splitters 158
4.1 High-reflectance mirror coatings 158
4.1.1 Metallic layers 158
4.1.2 Protection of metal films 160
4.1.3 Overall system performance, boosted reflectance 164
4.1.4 Reflecting coatings for the ultraviolet 167
4.2 Neutral beam splitters 169
4.2.1 Beam splitters using metallic layers 169
4.2.2 Beam splitters using dielectric layers 172
4.3 Neutral-density filters 176
References 177

5 Multilayer high-reflectance coatings 179
5.1 The Fabry–Perot interferometer 179
5.2 Multilayer dielectric coatings 185
5.2.1 All-dielectric multilayers with extended high-reflectance zones 193
5.2.2 Coating uniformity requirements 200
5.3 Losses 204
References 208
Contents

8.5.3 s- and p-polarisation together 381

8.6 Retarders 382
8.6.1 Achromatic quarter- and half-wave retardation plates 382
8.6.2 Multilayer phase retarders 385

8.7 Optical tunnel filters 389
References 391

9 Production methods and thin-film materials 393
9.1 The production of thin films 394
9.1.1 Thermal evaporation 395
9.1.2 Energetic processes 405
9.1.3 Other processes 413
9.1.4 Baking 417
9.2 Measurement of the optical properties 418
9.3 Measurement of the mechanical properties 436
9.4 Toxicity 445
9.5 Summary of some properties of common materials 446
References 456

10 Factors affecting layer and coating properties 462
10.1 Microstructure and thin-film behaviour 462
10.2 Sensitivity to contamination 478
References 485

11 Layer uniformity and thickness monitoring 488
11.1 Uniformity 488
11.1.1 Flat plate 490
11.1.2 Spherical surface 490
11.1.3 Rotating substrates 490
11.2 Substrate preparation 497
11.3 Thickness monitoring 499
11.3.1 Optical monitoring techniques 500
11.3.2 The quartz-crystal monitor 509
11.4 Tolerances 511
References 520

12 Specification of filters and environmental effects 523
12.1 Optical properties 523
12.1.1 Performance specification 523
12.1.2 Manufacturing Specification 526
12.1.3 Test Specification 527
12.2 Physical properties 530
12.2.1 Abrasion Resistance 530
12.2.2 Adhesion 533
12.2.3 Environmental Resistance 533
References 535
Contents

13 **System considerations: applications of filters and coatings** 536
 13.1 Potential energy grasp of interference filters 540
 13.2 Narrowband filters in astronomy 545
 13.3 Atmospheric temperature sounding 550
 13.4 Order-sorting filters for grating spectrometers 559
 13.5 Glare suppression filters and coatings 570
 13.6 Some coatings involving metal layers 575
 13.6.1 Electrode films for Schottky-barrier photodiodes 575
 13.6.2 Spectrally selective coatings for photothermal solar energy conversion 579
 13.6.3 Heat reflecting metal–dielectric coatings 583
 References 585

14 **Other topics** 588
 14.1 Rugate filters 588
 14.2 Ultrafast coatings 599
 14.3 Automatic methods 610
 References 619

15 **Characteristics of thin-film dielectric materials** 621
 References 628

Index 631