Contents

Chapter 1
Introduction to Telecommunications and Fiber Optics 1

1.1 Telecommunications 1
 What It Is 1
 Telecommunications: Point-to-Point Systems and Networks 2
 Information-Carrying Capacity 3
 The Need for Fiber-Optic Communications Systems 5

1.2 A Fiber-Optic Communications System: The Basic Blocks 6
 Basic Block Diagram 7
 The Role of Fiber-Optic Communications Technology 13

1.3 A Look Back and a Glance Ahead 13
 Historical Notes 13
 The Industry Today and Future Trends 19
 Developments to Watch 25

Problems 26
References 27

Chapter 2
Physics of Light: A Brief Overview 28

2.1 Electromagnetic Waves 28
2.2 Beams (Rays) 30
 Refractive Index 30
2.3 A Stream of Photons 36
 An Energy-Level Diagram 36
 A Photon 36
 Radiation and Absorption 37
Chapter 3
Optical Fibers—Basics 42

3.1 How Optical Fibers Conduct Light 42
 Step-Index Fiber: The Basic Structure 42
 Launching the Light: Understanding Numerical Aperture 46

3.2 Attenuation 49
 Bending Losses 50
 Scattering 52
 Absorption 53
 Calculations of Total Attenuation 54
 Measuring Attenuation 56

3.3 Intermodal and Chromatic Dispersion 57
 Modes 57
 Modal (Intermodal) Dispersion 60
 The First Solution to the Modal-Dispersion Problem—Graded-Index Fiber 63
 A Better Solution to the Modal-Dispersion Problem—Singlemode Fiber 65
 Chromatic Dispersion 66

3.4 Bit Rate and Bandwidth 69
 Bit Rate and Bandwidth Defined 69
 Dispersion and Bit Rate 70

3.5 Reading a Data Sheet 71
 Where to Begin 72
 General Section 72
 “Optical Characteristics” Section 72
 “Geometric Characteristics” Section 75
 “Environmental Specifications” Section 76
 “Mechanical Specifications” Section 77
 Other Characteristics 77
 Conclusion 77

Summary 79
Problems 80
References 82

Chapter 4
Optical Fibers—A Deeper Look 83

4.1 Maxwell's Equations 83
 Set of Maxwell's Equations 83
 Interpretation of Maxwell's Equations 85
 Wave Equations 87
 Solving Wave Equations 89

4.2 Propagation of EM Waves 90
 Wave Equations for a Time-Harmonic EM Field 90
 EM Waves: Propagation in a Lossy Medium 91
 EM Waves: Propagation in Waveguides 93
Chapter 5
Singlemode Fibers—Basics 139

5.1 How a Singlemode Fiber Works 139
 The Principle of Action 139
 Gaussian Beam 140
 Core, Cladding, and Mode-Field Diameter (MFD) 142
 Cutoff Wavelength 143

5.2 Attenuation 144
 Bending Losses 144
 Scattering 146
 Absorption 146

5.3 Dispersion and Bandwidth 147
 Chromatic Dispersion 147
 Conventional, Dispersion-Shifted, and Dispersion-Flattened Fibers 153
 Polarization-Mode Dispersion (PMD) 155
 Bandwidth (Bit Rate) of a Singlemode Fiber 158

5.4 Reading a Data Sheet 160
 General Section 160
 Specifications Section 160

Summary 165
Problems 166
References 167
Chapter 6
Singlemode Fibers—A Deeper Look 168

6.1 Mode Field 168
 Gaussian Model and Real Mode-Field Distribution 168
 Cutoff Wavelength and V-number 171

6.2 More About Attenuation in a Singlemode Fiber 172
 Intrinsic and Extrinsic Losses 173

6.3 Coping with Dispersion in a Singlemode Fiber 178
 Chromatic Dispersion 178
 Compensation for Chromatic Dispersion with Dispersion-Compensating Fiber 181
 Dispersion-Compensating Gratings (DCG) 185
 Dispersion Compensation: The System Viewpoint 187
 Coping with PMD 188
 Polarization-Dependent Loss (PDL) 194
 Brief Summary 195

6.4 Nonlinear Effects in a Singlemode Fiber 195
 Nonlinear Refractive Effects 195
 Four-Wave Mixing (FWM) 200
 Stimulated Scattering 202

6.5 Trends in Fiber Design 204
 Summary 206
 Problems 207
 References 208

Chapter 7
Fabrication, Cabling, and Installation 210

7.1 Fabrication 210
 Two Major Stages 211
 Vapor-Phase Deposition Methods 213
 Coating 218

7.2 Fiber-Optic Cables 220
 Cables 220
 Reading Data Sheets 242

7.3 Installation—Placing the Cable 244
 Classification 244
 Installation Procedure 244

 Summary 246
 Problems 246
 References 247

Chapter 8
Fiber Cable Connectorization and Testing 248

8.1 Splicing 248
 Connection Losses 248
 Splicing Procedure 252
 Conclusion 257

8.2 Connectors 257
 Connectors—A Basic Structure 258
 Major Characteristics 259
Contents

Connector Styles—Yesterday, Today, and Tomorrow 261
Standards 265
Reading Data Sheets 266
Termination Process 266
Receptacles, Adapters, and Special Connectors 267
Tests and Measurements 267

8.3 Installation Hardware 270
Why Installation Hardware 270
Hardware Systems and Components 272
Conclusion 283

8.4 Design of Local-Area-Network Installation 283
Link Consideration—Power Budget and Rise-Time Budget (Bandwidth) 284
Local Area Network—General Considerations 288
Cabling of Local Area Networks 291
Basic Recommendations 293
Plastic (Polymer) Optical Fiber (POF) 295

8.5 Testing, Troubleshooting, and Measurement 296
Test Equipment 296
What We Need to Test 304
Testing Network Attenuation 304
Testing Network Bandwidth 307
Connector and Splice Testing 307
Troubleshooting 310

Summary 310
Problems 311
References 312

Chapter 9
Light Sources and Transmitters—Basics 313

9.1 Light-Emitting Diodes (LEDs) 313
Light Radiation by a Semiconductor 314
General Considerations 318
Reading Data Sheets—Characteristics of LEDs 324

9.2 Laser Diodes (LDs) 332
Principle of Action 333
Superluminescent Diodes (SLDs) 347

9.3 Reading Data Sheets—The Characteristics of Laser Diodes 347
Broad-Area Laser Diodes 347
Reading the Data Sheet of a DFB Laser Diode 354

Summary 359
Problems 360
References 364

Chapter 10
Light Sources and Transmitters—A Deeper Look 365

10.1 More About Semiconductors 365
Intrinsic Semiconductors: Fermi Energy and Number of Charge Carriers 365
Doped Semiconductors 368
p-n Junction 369
Biasing 371
A Closer Look at the Bandgaps 372
10.2 Efficiency of a Laser Diode 375
 Input-Output Relationship 375
 Three Types of Efficiency 377
 More About the Efficiency of Laser-Diode Operation 381

10.3 Characteristics of Laser Diodes 386
 Threshold and Operating Currents 386
 Radiating Wavelength and Spectral Width 388
 Radiation Patterns 390
 Laser Modulation 393
 Chirp 398
 Noise 399

10.4 Transmitter Modules 400
 Functional Block Diagram and Typical Circuits of a Transmitter 401
 Packaging and Reliability 410
 Reading the Transmitter's Data Sheet 413
 External Modulators 416

Summary 428
Problems 428
References 433

Chapter 11
Receivers 434

11.1 Photodiodes 434
 p-n Photodiodes: How They Work 434
 Power Relationship 437
 Bandwidth 442
 p-i-n Photodiodes 445
 Avalanche Photodiodes (APDs) 447
 MSM Photodetectors 450

11.2 Reading the Data Sheets of Photodiodes 451
 Data Sheet of a p-i-n Photodiode 451
 Data Sheet of an Avalanche Photodiode 458
 Silicon Photodiodes 459
 Conclusion 459

11.3 More About Photodetectors 460
 Noise Sources in a Photodiode 460
 Signal-to-Noise Ratio and Noise-Equivalent Power 465
 Sensitivity and Quantum Limit 470

11.4 Receiver Units 476
 Functional Block Diagram and Typical Circuits of a Receiver 476
 Decision-Circuit Design 482
 Reading a Receiver's Data Sheet 487
 Opto-Electronic IC (OEIC) 490

Summary 491
Problems 493
References 497

Chapter 12
Components of Fiber-Optic Networks 499

12.1 Fiber-Optic Networks: An Overview 499
 Point-to-Point Links 499
 Networks 501
Chapter 14

An Introduction to Fiber-Optic Networks 651

14.1 The "What" and "How" of Data Transmission 652
What to Transmit: Voice, Video, and Data 652
Telephone Networks 652
Computer Networks 662
Cable TV 669

14.2 Elements of the Architecture of Fiber-Optic Networks 673
Networks, Protocols, and Services 673
Open Systems Interconnection (OSI) Reference Model 674
SONET Networks and Layers 680
ATM Networks and Layers 683
Layered Architecture of Fiber-Optic Networks 685
Optical Layer 687

14.3 Network Management and the Future of Fiber-Optic Networks 691
The Functions of Network Management 691
How Network Management Is Implemented 692
Fiber-Optic-Network Survivability (Protection and Restoration) 694
Conclusion: The Future of Fiber-Optic Networks 700

Summary 703
Problems 707
References 709

Chapter 15

Conclusion 712

15.1 Bandwidth: The Industry's 'Holy Grail' 712
15.2 Deployment of New Fiber-Optic Lines 713
15.3 Optical Fiber: Problems Galore, Solutions Sought 714
15.4 Fiber-Optic Components 715
15.5 Wavelength-Division Multiplexing: A Dire Need Met 717
15.6 Networks 717
15.7 Wireless Communications and Fiber-Optic Networks 719
Summing Up 719

References 719

Appendix A
List of Constants, Powers of Ten, International System of Units, Decibel Units, and the Greek Alphabet 721

Appendix B
Acronyms, Abbreviations, Symbols, and Units Used in this Book 724

Appendix C
A Selected Bibliography 731

Appendix D
Products, Services, and Standards 740

Index 743