PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS
GaN, AlN, InN, BN, SiC, SiGe

Edited by
Michael E. Levinshtein
The Ioffe Institute, Russian Academy of Sciences
Sergey L. Rumyantsev
The Ioffe Institute, Russian Academy of Sciences
Michael S. Shur
Rensselaer Polytechnic Institute

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS, INC.
New York / Chichester / Weinheim / Brisbane / Singapore / Toronto
Chapter 1 Gallium Nitride (GaN)

1.1. Basic Parameters at 300 K / 1

1.2. Band Structure and Carrier Concentration / 3
 1.2.1. Temperature Dependences / 4
 1.2.2. Dependence on Hydrostatic Pressure / 6
 1.2.3. Band Discontinuities at Heterointerfaces / 7
 1.2.4. Effective Masses / 7
 1.2.5. Donors and Acceptors / 8

1.3. Electrical Properties / 9
 1.3.1. Mobility and Hall Effect / 9
 1.3.2. Two-Dimensional Electron Gas Mobility at AlGaN/GaN Interface / 12
 1.3.3. Transport Properties in High Electric Field / 13
 1.3.4. Impact Ionization / 15
 1.3.5. Recombination Parameters / 15

1.4. Optical Properties / 16
Chapter 2 Aluminum Nitride (AlN)
Yu. Goldberg

2.1. Basic Parameters at 300 K / 31
2.2. Band Structure and Carrier Concentration / 33
 2.2.1. Temperature Dependences / 33
 2.2.2. Dependences on Hydrostatic Pressure / 34
 2.2.3. Band Discontinuities at Heterointerfaces / 35
 2.2.4. Effective Masses / 35
 2.2.5. Donors and Acceptors / 36
2.3. Electrical Properties / 37
 2.3.1. Mobility and Hall Effect / 37
 2.3.2. Recombination Parameters / 38
2.4. Optical Properties / 39
2.5. Thermal Properties / 41
2.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 44
References / 46

Chapter 3 Indium Nitride (InN)
A. Zubrilov

3.1. Basic Parameters at 300 K / 49
3.2. Band Structure and Carrier Concentration / 51
 3.2.1. Temperature Dependences / 51
 3.2.2. Dependence on Hydrostatic Pressure / 53
 3.2.3. Band Discontinuities at Heterointerfaces / 53
 3.2.4. Effective Masses / 53
 3.2.5. Donors and Acceptors / 54
3.3. Electrical Properties / 54
 3.3.1. Mobility and Hall Effect / 54
Chapter 4 Boron Nitride (BN)
S. Rumyantsev, M. Levinshtein, A.D. Jackson, S.N. Mohammad, G.L. Harris, M.G. Spencer, and M.S. Shur
4.1. Basic Parameters at 300 K / 68
4.2. Band Structure and Carrier Concentration / 70
 4.2.1. Dependence on Hydrostatic Pressure / 72
 4.2.2. Effective Masses / 73
 4.2.3. Donors and Acceptors / 75
4.3. Electrical Properties / 75
4.4. Optical Properties / 76
4.5. Thermal Properties / 80
4.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 86
References / 91

Chapter 5 Silicon Carbide (SiC)
Yu. Goldberg, M. Levinshtein, and S. Rumyantsev
5.1. Basic Parameters at 300 K / 93
5.2. Band Structure and Carrier Concentration / 96
 5.2.1. Temperature Dependences / 97
 5.2.2. Dependence on Hydrostatic Pressure / 100
 5.2.3. Energy Gap Narrowing at High Doping Levels / 101
 5.2.4. Effective Masses / 102
 5.2.5. Donors and Acceptors / 104
5.3. Electrical Properties / 106
 5.3.1. Mobility and Hall Effect / 106
 5.3.2. Transport Properties in High Electric Field / 111
 5.3.3. Impact Ionization / 114
 5.3.4. Recombination Parameters / 119

5.4. Optical Properties / 122

5.5. Thermal Properties / 132

5.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 138

References / 143

Chapter 6 Silicon-Germanium (Si\textsubscript{1-x}Ge\textsubscript{x})

6.1. Basic Parameters in Unstrained Bulk Material at 300 K / 151

6.2. Band Structure and Carrier Concentration / 154
 6.2.1. Temperature Dependences / 157
 6.2.2. Dependence of Energy Gap on Hydrostatic Pressure / 160
 6.2.3. Strain-Dependent Band Discontinuity / 160
 6.2.4. Effective Masses / 164

6.3. Electrical Properties / 168
 6.3.1. Mobility and Hall Effect / 168
 6.3.2. Two-Dimensional Electron Gas / 169
 6.3.3. Two-Dimensional Hole Gas / 171

6.4. Optical Properties / 173

6.5. Thermal Properties / 176

6.6. Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties / 179

References / 186

Appendixes

1. Basic Physical Constants / 189

2. Periodic Table of the Elements / 190
3. Rectangular Coordinates for Hexagonal Crystal / 191

4. The First Brillouin Zone for Wurtzite Crystal / 191

5. Zinc Blende Structure / 192

6. The First Brillouin Zone for Zinc Blende Crystal / 192

Additional References 193