Contents

Preface xix
Acknowledgements xxiii
About the Authors xxv

1 Concepts

1.1 Definition and Development of Supramolecular Chemistry
1.1.1 What is Supramolecular Chemistry? 2
1.1.2 Host–Guest Chemistry 3
1.1.3 Development 4

1.2 Classification of Supramolecular Host–Guest Compounds 6

1.3 Receptors, Coordination and the Lock and Key Analogy 8

1.4 The Chelate and Macroyclic Effects 9

1.5 Preorganisation and Complementarity 13

1.6 Thermodynamic and Kinetic Selectivity 14

1.7 Nature of Supramolecular Interactions 19
1.7.1 Ion–Ion Interactions 20
1.7.2 Ion–Dipole Interactions 21
1.7.3 Dipole–Dipole Interactions 22
1.7.4 Hydrogen Bonding 22
1.7.5 Cation–π Interactions 24
1.7.6 π–π Stacking 26
1.7.7 van der Waals Forces 28
1.7.8 Close Packing in the Solid State 28
1.7.9 Hydrophobic Effects 29
2 The Supramolecular Chemistry of Life

2.1 Alkali Metal Cations in Biochemistry
- 2.1.1 Membrane Potentials 37
- 2.1.2 Membrane Transport 39
- 2.1.3 Rhodopsin: A Supramolecular Photonic Device 47

2.2 Porphyrins and Tetrapyrrole Macrocycles

2.3 Supramolecular Features of Plant Photosynthesis
- 2.3.1 The Role of Magnesium Tetrapyrrole Complexes 50
- 2.3.2 Manganese-Catalysed Oxidation of Water to Oxygen 55

2.4 Uptake and Transport of Oxygen by Haemoglobin

2.5 Coenzyme B\textsubscript{12}

2.6 Neurotransmitters and Hormones

2.7 DNA
- 2.7.1 DNA Structure and Function 69
- 2.7.2 Site-Directed Mutagenesis 75
- 2.7.3 The Polymerase Chain Reaction 77
- 2.7.4 Binding to DNA 78

2.8 Biochemical Self-Assembly

2.9 Viagra®: Beyond the Hype

Study Problems

References
Cation-Binding Hosts

3.1 The Crown Ethers
- 3.1.1 Discovery and Scope
- 3.1.2 Synthesis

3.2 Lariat Ethers and Podands
- 3.2.1 Podands
- 3.2.2 Lariat Ethers
- 3.2.3 Bibracchial Lariat Ethers

3.3 Cryptands

3.4 The Spherands

3.5 Nomenclature

3.6 Solution Behaviour
- 3.6.1 Solubility Properties
- 3.6.2 Solution Applications

3.7 Selectivity of Cation Complexation
- 3.7.1 General Considerations
- 3.7.2 Crown Ethers
- 3.7.3 Lariat Ethers
- 3.7.4 Cryptands

3.8 The Macrocyclic, Macrobicyclic and Template Effects
- 3.8.1 The Macrocyclic Effect
- 3.8.2 The Template Effect
- 3.8.3 High-Dilution Synthesis
- 3.8.4 [2 + 2] Cydecondensation

3.9 Preorganisation and Complementarity
- 3.9.1 Thermodynamic Effects
- 3.9.2 Kinetic and Dynamic Effects

3.10 Soft Ligands for Soft Metal Ions
- 3.10.1 Heterocrowns
- 3.10.2 Heterocryptands
- 3.10.3 Mixed Cryptates
- 3.10.4 Schiff's Bases
3.11 Complexation of Organic Cations
3.11.1 Binding of Ammonium Cations by Corands
3.11.2 Binding of Ammonium Cations by Three-Dimensional Hosts
3.11.3 Ditopic Receptors
3.11.4 Chiral Recognition
3.11.5 Amphiphilic Receptors
3.11.6 Case Study: Herbicide Receptors

3.12 Alkalides and Electrides

3.13 The Calixarenes
3.13.1 Cation Complexation by Calixarenes
3.13.2 Phase Transport Equilibria
3.13.3 Cation Complexation by Hybrid Calixarenes

3.14 Carbon Donor and \(\pi\)-acid Ligands
3.14.1 Mixed C-Heteroatom Hosts
3.14.2 Hydrocarbon Hosts

3.15 The Siderophores
3.15.1 Naturally Occurring Siderophores
3.15.2 Synthetic Systems

Study Problems
Thought Experiment
References

4 Binding of Anions

4.1 Introduction

4.2 Biological Anion Receptors
4.2.1 Phosphate and Sulphate Binding Proteins
4.2.2 Arginine as an Anion Binding Site
4.2.3 Carboxypeptidase A

4.3 Concepts in Anion Host Design

4.4 From Cation Hosts to Anion Hosts—a Simple Change in pH
4.4.1 Tetrahedral Receptors
4.4.2 Shape Selectivity
Contents

4.4.3 Two-Dimensional Hosts 211
4.4.4 Cyclophane Hosts 219

4.5 Guanidinium-Based Receptors 220

4.6 Organometallic Receptors 225

4.7 Neutral Receptors 231
4.7.1 Zwitterions 233
4.7.2 Hydrogen Bonding Hosts 234

4.8 Hydride Sponge and Other Lewis Acid Chelates 236

4.9 Anticrowns 240

4.10 Coordination Interactions 244

Study Problems 248

Thought Experiments 249

References 249

5 Binding of Neutral Molecules 251

5.1 Inorganic Solid-State Clathrate Compounds 252
5.1.1 Clathrate Hydrates 252
5.1.2 Zeolites 258
5.1.3 Layered Solids and Intercalates 266
5.1.4 Hoffman Inclusion Compounds and Werner Clathrates 271

5.2 Solid-State Clathrates of Organic Hosts 272
5.2.1 Urea Clathrates 272
5.2.2 Other Channel Clathrates: Trimesic Acid, Helical Tubulands and Perhydrotriphenylene 278
5.2.3 Hydroquinone, Phenol and Dianin’s Compound: The Hexahost Strategy 286
5.2.4 Tri-o-thymotide 290
5.2.5 Cyclotrimeratrylene 295
5.2.6 Tetraphenylene 300
5.3 Intracavity Complexes of Neutral Molecules: Solution and Solid-State Binding

5.3.1 Intrinsic Curvature: Guest Binding by Cavitands
5.3.2 Cyclodextrins
5.3.3 Molecular Clefts and Tweezers
5.3.4 Cyclophane Hosts
5.3.5 Constructing a Solution Host from Clathrate-Forming Building Blocks: The Cryptophanes
5.3.6 Covalent Cavities: Carcerands and Hemicarcerands

5.4 Supramolecular Chemistry of the Fullerenes

5.4.1 Fullerenes as Guests
5.4.2 Fullerenes as Hosts
5.4.3 Fullerenes as Superconducting Intercalation Compounds

Study Problems

Thought Experiment

References
7.2 Biochemical Self-Assembly
7.2.1 The Tobacco Mosaic Virus
7.2.2 Strict Self-Assembly
7.2.3 Self-Assembly with Covalent Modification

7.3 Self-Assembly in Synthetic Systems: Kinetic and Thermodynamic Considerations
7.3.1 Template Effects in Synthesis
7.3.2 A Thermodynamic Model: Self-Assembly of Zinc Porphyrin Complexes

7.4 Self-Assembling Coordination Compounds
7.4.1 Design Principles
7.4.2 The Supramolecular Cube
7.4.3 Molecular Squares and Boxes
7.4.4 Self-Assembly of Metal Arrays

7.5 Self-Assembly of Closed Complexes by Hydrogen Bonding
7.5.1 Tennis Balls and Softballs
7.5.2 Giant Self-Assembling Capsules
7.5.3 Rosettes

7.6 Catenanes and Rotaxanes
7.6.1 Overview
7.6.2 Statistical Approaches to Catenanes and Rotaxanes
7.6.3 Pseudorotaxanes
7.6.4 Rotaxanes
7.6.5 Catenanes from π−π Stacking Interactions
7.6.6 Auxiliary Linkage Approaches to Catenane Synthesis

7.7 Helicates
7.7.1 Introduction
7.7.2 Synthetic Considerations
7.7.3 [4 + 4] Helicates
7.7.4 [6 + 6] Helicates
7.7.5 Self-Recognition and Positive Cooperativity
7.7.6 Nanocycles
7.7.7 Hydrogen-Bonded Helices

7.8 Molecular Knots

7.9 Catalytic and Self-Replicating Systems

Study Problems
8 Molecular Devices

8.1 Introduction
8.1.1 Philosophy of Molecular Devices
8.1.2 When is a Device Supramolecular?

8.2 Supramolecular Photochemistry
8.2.1 Photochemical Fundamentals
8.2.2 Bimetallic Systems and Mixed Valence
8.2.3 Bipyridine and Friends
8.2.4 Bipyridyl-Based Photo- and Electrochemical Devices
8.2.5 Light-Conversion Devices
8.2.6 Noncovalently Bonded Systems

8.3 Information and Signals: Semiochemistry
8.3.1 Photochemical Sensors
8.3.2 Fluorophores
8.3.3 Electrochemical Sensors

8.4 Molecular Electronic Devices: Switches, Wires and Rectifiers
8.4.1 Molecular Wires
8.4.2 Molecular Rectifiers
8.4.3 The 1,2-Dithienylethene System as a Switch
8.4.4 Electroswitchable Luminescence
8.4.5 Switchable Binding
8.4.6 Allosteric Switches

8.5 Machines Based on Catenanes and Rotaxanes

8.6 Nonlinear Optical Materials
8.6.1 Origins of Nonlinear Optical Effects
8.6.2 Second-Order Nonlinear Optical Materials
8.6.3 Third Harmonic Generation Nonlinear Optical Materials
8.7 Dendrimers

8.7.1 Preparation and Properties of Dendrimers
8.7.2 Dendrimer Host–Guest Chemistry
8.7.3 Dendritic Photochemical Devices

Study Problems

References

9 Biological Mimics

9.1 Introduction

9.1.1 Supramolecular Biochemistry
9.1.2 Characteristics of Biological Models

9.2 Characteristics of Enzymes

9.2.1 Definition and Structure
9.2.2 Mechanism of Enzymatic Catalysis

9.3 Cyclodextrins as Enzyme Mimics

9.3.1 Enzyme Modelling Using an Artificial Host Framework
9.3.2 Cyclodextrins as Esterase Mimics
9.3.3 Functionalised Cyclodextrins

9.4 Corands as ATPase Mimics

9.5 Cation-Binding Hosts as Transacylase Mimics

9.5.1 Chiral Corands
9.5.2 A Structure and Function Mimic

9.6 Metalllobiosites

9.6.1 Haemocyanin Models
9.6.2 Zinc-Containing Enzymes

9.7 Haem Analogues

9.7.1 Models of Oxygen Uptake and Transport
9.7.2 Cytochrome P-450 Models

9.8 Vitamin B₁₂ Models

Study Problems
10 Liquid Interfaces, Liquid Crystals and Liquid Clathrates

10.1 Order in Liquids

10.2 Surfactants and Interfacial Ordering

10.3 Liquid Crystals
 10.3.1 Nature and Structure
 10.3.2 Design of Liquid Crystalline Materials
 10.3.3 Liquid Crystalline Polymers
 10.3.4 Liquid Crystal Displays

10.4 Liquid Clathrates
 10.4.1 Properties and Discovery
 10.4.2 The Oxonium Ion in Liquid Clathrate Chemistry

Study Problems

References

Index