Contents

Preface xi

Chapter 1 Fundamental Concepts 1

1.1 What Is a Graph? 1
 The Definition, 1
 Graphs as Models, 3
 Matrices and Isomorphism, 6
 Decomposition and Special Graphs, 11
 Exercises, 14

1.2 Paths, Cycles, and Trails 19
 Connection in Graphs, 20
 Bipartite Graphs, 24
 Eulerian Circuits, 26
 Exercises, 31

1.3 Vertex Degrees and Counting 34
 Counting and Bijections, 35
 Extremal Problems, 38
 Graphic Sequences, 44
 Exercises, 47

1.4 Directed Graphs 53
 Definitions and Examples, 53
 Vertex Degrees, 58
 Eulerian Digraphs, 60
 Orientations and Tournaments, 61
 Exercises, 63
Chapter 2 Trees and Distance

2.1 Basic Properties
- Properties of Trees, 68
- Distance in Trees and Graphs, 70
- Disjoint Spanning Trees (optional), 73
- Exercises, 75

2.2 Spanning Trees and Enumeration
- Enumeration of Trees, 81
- Spanning Trees in Graphs, 83
- Decomposition and Graceful Labelings, 87
- Branchings and Eulerian Digraphs (optional), 89
- Exercises, 92

2.3 Optimization and Trees
- Minimum Spanning Tree, 95
- Shortest Paths, 97
- Trees in Computer Science (optional), 100
- Exercises, 103

Chapter 3 Matchings and Factors

3.1 Matchings and Covers
- Maximum Matchings, 108
- Hall's Matching Condition, 110
- Min-Max Theorems, 112
- Independent Sets and Covers, 113
- Dominating Sets (optional), 116
- Exercises, 118

3.2 Algorithms and Applications
- Maximum Bipartite Matching, 123
- Weighted Bipartite Matching, 125
- Stable Matchings (optional), 130
- Faster Bipartite Matching (optional), 132
- Exercises, 134

3.3 Matchings in General Graphs
- Tutte's 1-factor Theorem, 136
- \(f \)-factors of Graphs (optional), 140
- Edmonds' Blossom Algorithm (optional), 142
- Exercises, 145
Chapter 6 Planar Graphs

6.1 Embeddings and Euler’s Formula
Drawings in the Plane, 233
Dual Graphs, 236
Euler’s Formula, 241 255
Exercises, 243

6.2 Characterization of Planar Graphs
Preparation for Kuratowski’s Theorem, 247
Convex Embeddings, 248
Planarity Testing (optional), 252
Exercises, 255

6.3 Parameters of Planarity
Coloring of Planar Graphs, 257
Crossing Number, 261
Surfaces of Higher Genus (optional), 266
Exercises, 269

Chapter 7 Edges and Cycles

7.1 Line Graphs and Edge-coloring
Edge-colorings, 274
Characterization of Line Graphs (optional), 279
Exercises, 282

7.2 Hamiltonian Cycles
Necessary Conditions, 287
Sufficient Conditions, 288
Cycles in Directed Graphs (optional), 293
Exercises, 294

7.3 Planarity, Coloring, and Cycles
Tait’s Theorem, 300
Grinberg’s Theorem, 302
Snarks (optional), 304
Flows and Cycle Covers (optional), 307
Exercises, 314
Chapter 8 Additional Topics (optional) 319

8.1 Perfect Graphs 319
 The Perfect Graph Theorem, 320
 Chordal Graphs Revisited, 323
 Other Classes of Perfect Graphs, 328
 Imperfect Graphs, 334
 The Strong Perfect Graph Conjecture, 340
 Exercises, 344

8.2 Matroids 349
 Hereditary Systems and Examples, 349
 Properties of Matroids, 354
 The Span Function, 358
 The Dual of a Matroid, 360
 Matroid Minors and Planar Graphs, 363
 Matroid Intersection, 366
 Matroid Union, 369
 Exercises, 372

8.3 Ramsey Theory 378
 The Pigeonhole Principle Revisited, 378
 Ramsey’s Theorem, 380
 Ramsey Numbers, 383
 Graph Ramsey Theory, 386
 Sperner’s Lemma and Bandwidth, 388
 Exercises, 392

8.4 More Extremal Problems 396
 Encodings of Graphs, 397
 Branchings and Gossip, 404
 List Coloring and Choosability, 408
 Partitions Using Paths and Cycles, 413
 Circumference, 416
 Exercises, 422

8.5 Random Graphs 425
 Existence and Expectation, 426
 Properties of Almost All Graphs, 430
 Threshold Functions, 432
 Evolution and Graph Parameters, 436
 Connectivity, Cliques, and Coloring, 439
 Martingales, 442
 Exercises, 448