FUNDAMENTALS OF PHYSICAL ACOUSTICS

DAVID T. BLACKSTOCK
University of Texas
Austin, Texas

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS, INC.
New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
CONTENTS

Preface xix

Chapter 1 Introduction 1

A. What Is a Wave? 1

B. Plane Waves: Some Basic Solutions 3

1. General Solution of the Wave Equation 4

2. Free Waves 10

3. Forced Waves 14

4. Relation between Derivatives for a Progressive Wave 16

C. Derivation of Wave Equations. Impedance 18

1. Electrical Transmission Line 18

2. Waves on a String 22

3. Sound Waves 27

D. Spherical and Cylindrical Sound Waves of One Dimension 39

1. Three-Dimensional Wave Equation 40

2. Solutions for One-Dimensional Waves 41

3. Sound from a Pulsating Sphere 42
E. Signals, Impedance, Intensity and Power, and Levels 44
 1. Time and Frequency Domains 44
 2. Impedance 46
 3. Intensity and Sound Power 48
 4. Sound Pressure Level and Other Levels 51
References 55
Problems 55

Chapter 2 Detailed Development of the Acoustical Wave Equation 65
A. Conservation Equations and Constitutive Relation 65
 1. Equation of Continuity 65
 2. Momentum Equation 69
 3. Energy Equation 77
 4. Equation of State (Constitutive Relation) 80
 5. Entropy Equation 82
 6. Summary and Discussion 83
B. Nonlinear Wave Equation 84
 1. Introduction 84
 2. Plane Progressive Waves of Finite Amplitude 86
 3. Second-Harmonic Distortion 89
 4. Sum- and Difference-Frequency (Intermodulation) Distortion 91
C. Small-Signal Wave Equation 91
 1. Lossless Medium at Rest 91
 2. Lossless Medium Moving with Constant Velocity 93
 3. Lossless Medium in a Gravitational Field 95
 4. Viscous Fluid 96
 5. Viscous, Thermally Conducting Fluid 97
 6. Relaxing Fluid 98
References 98
Problems 99
Chapter 3 Reflection and Transmission of Normally Incident Plane Waves of Arbitrary Waveform

A. Reflection and Transmission Coefficients for an Interface between Two Ideal Fluids

1. Pressure Signals
2. Sound Power
3. Transmission Loss

B. Special Cases

1. Rigid Wall
2. Pressure Release Surface
3. Matched Impedance Interface

C. Change in Cross-Sectional Area

D. Examples

1. Rectangular Pulse in an Air-Filled Tube of Finite Length
2. Shock Tube
3. Bursting Balloon

References
Problems

Chapter 4 Normal Incidence Continued: Steady-State Analysis

A. Introduction

B. Single Impedance Termination

1. Pressure Release Termination ($Z_n = 0$)
2. Rigid Termination ($Z_n = \infty$)
3. General Resistive Termination
4. General Impedance Termination
5. Change in Cross-Sectional Area

C. Lumped-Element Approximation

1. Electrical Analogs
2. Short Closed Cavity 145
3. End Correction for an Open Tube 151
4. Short Open Cavity 153
5. Helmholtz Resonator 153
6. Orifice 156

D. Examples 156
1. Side Branches, Filters 156
2. Probe Tube Microphone 160

E. Three-Medium Problems 163
1. Three Different Media, Constant Cross Section 163
2. Cross Sections Different for the Three Media 168
3. Sound Power Reflection and Transmission Coefficients 170

F. Wall Transmission Loss: Lumped-Element Approach 171

References 173
Problems 174

Chapter 5 Transmission Phenomena: Oblique Incidence 186

A. Simple Derivation of Snell’s Law and Specular Reflection 186

B. Plane Interface Separating Two Fluids 189
1. Alternative Derivation of Snell’s Law; \(R, T, \) and \(\tau \) Coefficients 190
2. Special Cases 193

C. Transmission through Panels at Oblique Incidence 198
2. Panel Stiffness: The Coincidence Effect 203

D. Composite Walls 208

References 211
Problems 211
Chapter 6 Normal Modes in Cartesian Coordinates: Strings, Membranes, Rooms, and Rectangular Waveguides

A. Vibrating String (and Other One-Dimensional Problems)
 1. String with Fixed Ends
 2. Other Boundary Conditions
 3. The Struck String

B. Vibrating Membrane

C. Sound in a Rectangular Enclosure

D. Rectangular Waveguide
 1. Membrane Waveguide
 2. Forward Traveling Waves, Phase Velocity, and Cutoff
 3. Physical Interpretation
 4. Source Conditions

References

Problems

Chapter 7 Horns

A. Webster Horn Equation
 1. Continuity Equation
 2. Momentum Equation
 3. Webster Horn Equation

B. Example: Exponential Horn
 1. Exponential Horn Equation and Solution
 2. Amplitude Decay and Phase Velocity

C. Impedance, Power Transmitted, and Transmission Factor
 1. Impedance and Power
 2. Conical Horn
 3. Transmission Factor
D. More General Approach: WKB Method
1. Application to the Horn Equation: Direct Approach
2. Modified Approach
3. Impedance and Transmission Factor
4. Examples

E. Horn Duals
References
Problems

Chapter 8 Propagation in Stratified Media

A. Static Properties of the Atmosphere and the Ocean
1. Atmosphere
2. Ocean

B. Vertical Propagation of Plane Waves
1. One-Dimensional Wave Equation
2. Vertical Propagation through an Isothermal Atmosphere
3. General Solution by Means of the WKB Method

C. Ray Theory
1. Ray Paths
2. Rays in a Fluid Having a Linear Sound Speed Profile
3. Time of Travel along a Ray Path

References
Problems

Chapter 9 Propagation in Dissipative Fluids: Absorption and Dispersion

A. Introduction

B. Viscosity and Heat Conduction
1. Viscous Fluids
2. Thermally Conducting Fluids
CONTENTS

3. Thermoviscous Fluids 313

C. Relaxation 315
1. Introduction 315
2. Equation of State 317
3. Wave Equation 318
4. Dispersion Relation 318

D. Boundary-Layer Absorption (and Dispersion) 322
1. Physical Phenomenon: Viscous Boundary Layer 322
2. Thermal Boundary Layer 323
3. Effect of the Two Boundary Layers 324

E. Summary of Sound Absorption in Fluids 325
1. Viscous Fluids 325
2. Thermally Conducting Fluids 326
3. Thermoviscous Fluids 326
4. Relaxing Fluids 326
5. Boundary-Layer Absorption: Thermoviscous Fluids 327

References 327
Problems 328

Chapter 10 Spherical Waves 335

A. Introduction 335

B. Solution by Separation of Variables 337
1. Legendre Polynomials 338
2. Spherical Bessel Functions 341
3. Spherical Hankel Functions 344
4. Summary of Solutions for Axially Symmetric Wave Motion 345
5. Most General Spherical Waves; Spherical Harmonics 346
6. Example: Bipolar Pulsating Sphere 349

C. Standing Spherical Waves: Enclosure Problems 352
CONTENTS

5. Phase and Group Velocity 427
C. Cylindrical Waves in Waveguides 428
 1. Cylindrical Tube 429
 2. Parallel Planes 430
References 432
Problems 433

Chapter 13 Radiation from a Baffled Piston 440
A. General Solution: The Rayleigh Integral 441
 1. Time-Harmonic Piston Vibration 442
 2. Example: Ring Piston 442
 3. Circular Piston (Disk) 445
B. Farfield Radiation 446
 1. Rayleigh Distance 447
 2. Size of \(ka \) 449
 3. First Null, Minor-Lobe Suppression, Beamwidth, and Phase 450
 4. Intensity, Power, and Source Level 451
C. Pressure Field on the Axis 452
 1. Transition to the Farfield 454
 2. Nearfield Structure 454
 3. Intensity 455
D. Pressure on the Face of the Piston 457
E. Transient Radiation from a Piston 460
 1. Signal on the Axis 460
 2. Farfield 461
F. Nonuniform Piston 463
References 465
Problems 465
Chapter 14 Diffraction

A. Introduction

B. Helmholtz-Kirchhoff Integral Theorem
 1. Derivation
 2. Time Domain Version

C. Circular Aperture
 1. Plane Wave Normally Incident on a Circular Aperture
 2. Spherical Wave Incident on a Circular Aperture

D. Reflection by a Rigid Disk

E. Babinet's Principle

References

Problems

Chapter 15 Arrays

A. Directivity: Nomenclature and Definitions

B. Array of Two Point Sources

C. Array of N Point Sources

D. Continuous Line Array

E. Array of Directional Sources: Product Theorem

References

Problems

Appendix A Elastic Constants, Velocity of Sound, and Characteristic Impedance

Appendix B Absorption Formulas for the Atmosphere and Ocean
 1. Atmosphere
 2. Ocean

References

Appendix C Absorption due to Tube Wall Boundary-Layer Effects
 1. Viscous Boundary Layer
 2. Quasi-Plane-Wave Equation