CONTENTS

PREFACE XV

1 THE MANAGEMENT OF COMPLEXITY 1
1.1 The Control of Complexity 2
1.2 Abstraction, Information Hiding, and Layering 3
1.3 Division into Parts 6
 1.3.1 Encapsulation and Interchangeability 6
 1.3.2 Interface and Implementation 7
 1.3.3 The Service View 8
 1.3.4 Repetition and Recursion 9
1.4 Composition 11
1.5 Layers of Specialization 14
1.6 Multiple Views 16
1.7 Patterns 16
1.8 Chapter Summary 18
 Further Information 19
 Study Questions 20
 Exercises 21
 Programming Projects 21

2 ABSTRACT DATA TYPES 23
2.1 What Is a Type? 24
 2.1.1 Classes 25
 2.1.2 Interfaces and Polymorphism 27
2.2 Abstract Data Types 30
2.3 The Fundamental ADTs 34
 2.3.1 Collection 34
5 Increasing Confidence in Correctness 97

5.1 Program Proofs 97
 5.1.1 Invariants 98
 5.1.2 Analyzing Loops 100
 5.1.3 Asserting That the Outcome Is Correct 103
 5.1.4 Progress toward an Objective 104
 5.1.5 Manipulating Unnamed Quantities 105
 5.1.6 Function Calls 106
 5.1.7 Recursive Algorithms 107

5.2 Program Testing 109

5.3 Chapter Summary 111
 Further Information 111
 Study Questions 111
 Exercises 112
 Programming Projects 114

6 Vectors 117

6.1 The Vector Data Structure 117
6.2 Enumeration 127
6.3 Application–Silly Sentences 128
6.4 Application–Memory Game 131
6.5 Application–Shell Sort 136
6.6 A Visual Vector 140
6.7 Chapter Summary 144
 Further Information 144
 Study Questions 144
 Exercises 145
 Programming Projects 149
7 Sorting Vectors 153
7.1 Divide and Conquer 153
 7.1.1 Binary Search 155
7.2 Sorted Vectors 158
7.3 Merge Sort 161
7.4 Partitioning 165
 7.4.1 The Pivot Algorithm 166
 7.4.2 Finding the nth Element 168
 7.4.3 Quick Sort 171
7.5 Chapter Summary 175
Further Information 175
Study Questions 176
Exercises 176
Programming Projects 179

8 Linked Lists 181
8.1 Varieties of Linked Lists 185
8.2 LISP-Style Lists 187
8.3 The LinkedList Abstraction 189
8.4 Application–Asteroids Game 197
8.5 Application–Infinite-Precision Integers 207
8.6 Chapter Summary 211
Further Information 212
Study Questions 212
Exercises 212
Programming Projects 214

9 List Variations 217
9.1 Sorted Lists 217
 9.1.1 Fast Merge 219
 9.1.2 Execution Timings for Merge Operations 220
9.2 Self-Organizing Lists 221
9.3 Skip Lists 223
9.4 Chapter Summary 232
Further Information 232
Study Questions 233
10 STACKS 237
10.1 The Stack ADT 239
10.2 Checking for Balanced Parentheses 240
10.3 Towers of Hanoi, Revisited 242
10.4 A Four-Function Calculator 244
10.5 A Solitaire Program 250
10.6 Implementation of the Stack Abstraction 257
10.7 Chapter Summary 260
Further Information 260
Study Questions 260
Exercises 261
Programming Projects 264

11 DEQUES 267
11.1 A Fractal Snowflake 269
11.2 Depth- and Breadth-First Search 273
11.3 An Implementation: The IndexedDeque 281
11.4 Chapter Summary 287
Further Information 287
Study Questions 287
Exercises 288
Programming Projects 291

12 QUEUES 293
12.1 The Queue ADT 294
12.2 The Caterpillar Game 295
12.3 A Pastry Factory Simulation 302
12.4 Implementation of the Queue Abstraction 308
12.4.1 A Vector-Based Queue 312
12.4.2 The Ring Buffer Queue 313
12.4.3 Piped Input/Output Streams 317
12.5 Chapter Summary 318
Further Information 318
16 **HASH TABLES** 417

16.1 Hash Functions 418
 16.1.1 Hash Functions 421
 16.1.2 Hash Functions in the Java Standard Library 423

16.2 Collision Resolution 424

16.3 Hash Table Sorting Algorithms 427
 16.3.1 Counting Sort 428
 16.3.2 Radix Sorting 430

16.4 Open-Address Hashing 433

16.5 The Hashtable Data Type 437

16.6 Application–Ranking Poker Hands 440

16.7 Chapter Summary 442
 Further Information 443
 Study Questions 444
 Exercises 445
 Programming Projects 447

17 **MAPS** 451

17.1 Example Programs 453
 17.1.1 Silly-Sentence Generation, Revisited 453
 17.1.2 An Address Database 458
 17.1.3 A Concordance 461

17.2 An Implementation 463

17.3 Searching Problems and Maps 469

17.4 Chapter Summary 471
 Further Information 471
 Study Questions 472
 Exercises 473
 Programming Projects 474
18 SETS 479
18.1 Changing a Bag into a Set 480
18.2 Set Union, Intersection, and Differences 482
18.3 Sorted List Sets 485
18.4 Application—A Spelling Checker 490
18.5 The Union-Find Problem 491
18.6 The BitSet Abstraction 495
18.7 Application—Prime Number Sieve 498
18.8 Chapter Summary 500
 Further Information 501
 Study Questions 501
 Exercises 501
 Programming Projects 503

19 MATRICES 507
19.1 Java Matrices 507
19.2 Application—Rain Game 510
19.3 Binary Matrices 514
19.4 Application—The Game of Life 515
19.5 Sparse Vectors 519
19.6 An Application—(Almost) Infinitely Large Hash Tables 521
19.7 Sparse Matrices 523
19.8 Noninteger Keys 524
19.9 Chapter Summary 526
 Further Information 526
 Study Questions 527
 Exercises 527
 Programming Projects 528

20 GRAPHS 531
20.1 Adjacency-Matrix Representation 533
20.2 Edge-List Representation 537
20.3 Weighted-Graph Representation 541
 20.3.1 Weighted-Adjacency Matrix 542
 20.3.2 Floyd’s Algorithm 542
 20.3.3 Weighted-Edge-List Representation 543
20.3.4 Dijkstra's Algorithm 544

20.4 Other Graph Problems 549
20.4.1 Topological Sorting 549
20.4.2 Depth-First Search Spanning Tree 550
20.4.3 Problem–The Traveling Salesman 551

20.5 Chapter Summary 553
Further Information 553
Study Questions 553
Exercises 554
Programming Projects 556

APPENDIX A JAVA SYNTAX 559

A.1 Program Structure 559
A.1.1 Packages 559
A.1.2 Import Declaration 560
A.1.3 Class Declaration 560
A.1.4 Interface Declaration 561
A.1.5 Method Declaration 561
A.1.6 Constructors 563
A.1.7 Data Field Declaration 563

A.2 Statements 564
A.2.1 Declaration Statement 564
A.2.2 Assignment Statement 564
A.2.3 Procedure Calls 564
A.2.4 if Statement 565
A.2.5 switch Statement 565
A.2.6 while Statement 566
A.2.7 for Statement 566
A.2.8 return Statement 566
A.2.9 throw Statement 567
A.2.10 try Statement 567

A.3 Expressions 567
A.3.1 Literal 568
A.3.2 Variables 568
A.3.3 Data Field and Method Access 569
A.3.4 Operators 570
A.3.5 Object Creation 570
A.3.6 Arrays 571

A.4 Files 571
APPENDIX B IMPORT LIBRARIES 573

APPENDIX C DATA STRUCTURES IN THE JAVA STANDARD LIBRARY 577
C.1 Collection 577
C.2 Enumerators and Iterators 578
C.3 Vectors 578
C.4 Lists 579
C.5 Stack, Queue, and Deque 580
C.6 Priority Queue 580
C.7 Binary Search Tree 580
C.8 Hash Tables 581
C.9 Set 581
C.10 Map 582

BIBLIOGRAPHY 583
INDEX 589