Frank C. Hoppensteadt

Analysis and Simulation of Chaotic Systems

Second Edition

With 73 Illustrations
Contents

Acknowledgments v
Introduction xiii

1 Linear Systems 1
 1.1 Examples of Linear Oscillators 1
 1.1.1 Voltage-Controlled Oscillators 2
 1.1.2 Filters 3
 1.1.3 Pendulum with Variable Support Point 4
 1.2 Time-Invariant Linear Systems 5
 1.2.1 Functions of Matrices 6
 1.2.2 $\exp(At)$ 7
 1.2.3 Laplace Transforms of Linear Systems 9
 1.3 Forced Linear Systems with Constant Coefficients 10
 1.4 Linear Systems with Periodic Coefficients 12
 1.4.1 Hill’s Equation 14
 1.4.2 Mathieu’s Equation 15
 1.5 Fourier Methods 18
 1.5.1 Almost-Periodic Functions 18
 1.5.2 Linear Systems with Periodic Forcing 21
 1.5.3 Linear Systems with Quasiperiodic Forcing 22
 1.6 Linear Systems with Variable Coefficients: Variation of Constants Formula 23
 1.7 Exercises 24
2 Dynamical Systems

2.1 Systems of Two Equations
2.1.1 Linear Systems
2.1.2 Poincaré and Bendixson’s Theory
2.1.3 $x'' + f(x)x' + g(x) = 0$

2.2 Angular Phase Equations
2.2.1 A Simple Clock: A Phase Equation on T^1
2.2.2 A Toroidal Clock: Denjoy’s Theory
2.2.3 Systems of N (Angular) Phase Equations
2.2.4 Equations on a Cylinder: PLL

2.3 Conservative Systems
2.3.1 Lagrangian Mechanics
2.3.2 Plotting Phase Portraits Using Potential Energy
2.3.3 Oscillation Period of $x'' + U_x(x) = 0$
2.3.4 Active Transmission Line
2.3.5 Phase-Amplitude (Angle-Action) Coordinates
2.3.6 Conservative Systems with N Degrees of Freedom
2.3.7 Hamilton–Jacobi Theory
2.3.8 Liouville’s Theorem

2.4 Dissipative Systems
2.4.1 van der Pol’s Equation
2.4.2 Phase Locked Loop
2.4.3 Gradient Systems and the Cusp Catastrophe

2.5 Stroboscopic Methods
2.5.1 Chaotic Interval Mappings
2.5.2 Circle Mappings
2.5.3 Annulus Mappings
2.5.4 Hadamard’s Mappings of the Plane

2.6 Oscillations of Equations with a Time Delay
2.6.1 Linear Spline Approximations
2.6.2 Special Periodic Solutions

2.7 Exercises

3 Stability Methods for Nonlinear Systems

3.1 Desirable Stability Properties of Nonlinear Systems
3.2 Linear Stability Theorem
3.2.1 Gronwall’s Inequality
3.2.2 Proof of the Linear Stability Theorem
3.2.3 Stable and Unstable Manifolds

3.3 Liapunov’s Stability Theory
3.3.1 Liapunov’s Functions
3.3.2 UAS of Time-Invariant Systems
3.3.3 Gradient Systems
3.3.4 Linear Time-Varying Systems
3.3.5 Stable Invariant Sets
Contents xi

7.5.2 Rotation Numbers and Period Doubling Bifurcations 227
7.5.3 Euler's Forward Method for Numerical Simulation 227
7.5.4 Computer Simulation of Rotation Vectors .. 229
7.5.5 Near Identity Flows on $S^1 \times S^1$.. 231
7.5.6 KAM Theory ... 233
7.6 Homogenization .. 234
7.7 Computational Aspects of Averaging .. 235
 7.7.1 Direct Calculation of Averages ... 236
 7.7.2 Extrapolation ... 237
7.8 Averaging Systems with Random Noise .. 238
 7.8.1 Axioms of Probability Theory .. 238
 7.8.2 Random Perturbations .. 241
 7.8.3 Example of a Randomly Perturbed System 242
7.9 Exercises .. 243

8 Quasistatic-State Approximations .. 249
 8.1 Some Geometrical Examples of Singular Perturbation Problems 254
 8.2 Quasistatic-State Analysis of a Linear Problem .. 257
 8.2.1 Quasistatic Problem ... 258
 8.2.2 Initial Transient Problem ... 261
 8.2.3 Composite Solution ... 263
 8.2.4 Volterra Integral Operators with Kernels Near δ 264
 8.3 Quasistatic-State Approximation for Nonlinear Initial Value Problems .. 264
 8.3.1 Quasistatic Manifolds .. 265
 8.3.2 Matched Asymptotic Expansions .. 268
 8.3.3 Construction of QSSA .. 270
 8.3.4 The Case $T = \infty$... 271
 8.4 Singular Perturbations of Oscillations ... 273
 8.4.1 Quasistatic Oscillations ... 274
 8.4.2 Nearly Discontinuous Oscillations .. 279
 8.5 Boundary Value Problems ... 281
 8.6 Nonlinear Stability Analysis near Bifurcations 284
 8.6.1 Bifurcating Static States ... 284
 8.6.2 Nonlinear Stability Analysis of Nonlinear Oscillations 287
 8.7 Explosion Mode Analysis of Rapid Chemical Reactions 289
 8.8 Computational Schemes Based on QSSA .. 292
 8.8.1 Direct Calculation of $x_0(h), y_0(h)$... 293
 8.8.2 Extrapolation Method .. 294
 8.9 Exercises .. 295

Supplementary Exercises ... 301