Detailed Contents

PART 1: PRELIMINARIES

1.1 Foreword to the First Edition of the Handbook 3
1.2 Explanation of the Reference System 5
1.3 Topics Covered and Arrangement of the Handbook-II 7

PART 2: STRUCTURE OF HETEROCYCLES

2.1 Overview 11
2.1.1 RELATIONSHIP OF HETEROCYCLIC AND CARBOCYCLIC AROMATIC COMPOUNDS 11
2.1.2 ARRANGEMENT OF STRUCTURE CHAPTERS 12
2.1.3 NOMENCLATURE 12

2.2 Structure of Six-membered Rings 15
2.2.1 SURVEY OF POSSIBLE STRUCTURES: NOMENCLATURE 15
 2.2.1.1 Aromatic Nitrogen Systems without Exocyclic Conjugation 15
 2.2.1.2 Aromatic Systems with Exocyclic Conjugation 16
 2.2.1.3 Ring Systems Containing One Oxygen or Sulfur 18
 2.2.1.4 Rings Containing Nitrogen with Oxygen and/or Sulfur 19
 2.2.1.5 Fully Conjugated but Non-aromatic Compounds 19
2.2.2 THEORETICAL METHODS: CALCULATIONS 20
 2.2.2.1 The σ,π-MO Approximation (Hückel theory) 20
 2.2.2.2 More Sophisticated Semi-Empirical Methods 21
 2.2.2.3 Ab Initio Calculations 21
 2.2.2.4 Molecular Mechanics 22
 2.2.2.5 Some Results of Calculations of Six-membered Heterocyclic Molecules 22
2.2.3 STRUCTURAL METHODS 24
 2.2.3.1 X-Ray Diffraction 24
 2.2.3.2 Microwave Spectroscopy 26
 2.2.3.3 ¹H NMR Spectra 26
 2.2.3.3.1 Chemical shifts 26
 2.2.3.3.2 Coupling constants 27
 2.2.3.4 ¹³C NMR Spectra 27
 2.2.3.4.1 Aromatic systems: chemical shifts 27
 2.2.3.4.2 Aromatic systems: coupling constants 30
 2.2.3.4.3 Saturated systems 32
 2.2.3.5 Nitrogen and Oxygen NMR Spectra 33
 2.2.3.6 UV and Related Spectra 35
 2.2.3.6.1 Features of UV spectra 35
 2.2.3.6.2 Applications of UV spectroscopy 36
 2.2.3.7 IR and Raman Spectra 37
 2.2.3.8 Mass Spectrometry 38
 2.2.3.9 Photoelectron Spectroscopy 41
2.2.4 THERMODYNAMIC ASPECTS 41
 2.2.4.1 Intermolecular Forces 41
 2.2.4.1.1 Melting and boiling points 41
 2.2.4.1.2 Solubility 41
 2.2.4.1.3 Gas-liquid chromatography 43
 2.2.4.2 Fully Conjugated Rings: Aromaticity 43
 2.2.4.2.1 Background 43
Detailed Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4.2.2 Energetical criteria</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4.2.3 Structural criteria</td>
<td>45</td>
</tr>
<tr>
<td>2.2.4.2.4 Magnetic criteria</td>
<td>46</td>
</tr>
<tr>
<td>2.2.4.3 Partially and Fully Reduced Rings</td>
<td>47</td>
</tr>
<tr>
<td>2.2.5 TAUTOMERISM</td>
<td>47</td>
</tr>
<tr>
<td>2.2.5.1 Prototropic Tautomerism of Substituent Groups</td>
<td>47</td>
</tr>
<tr>
<td>2.2.5.1.1 Pyridones and Hydroxypyridines</td>
<td>47</td>
</tr>
<tr>
<td>2.2.5.1.2 Other substituted azines</td>
<td>51</td>
</tr>
<tr>
<td>2.2.5.2 Tautomerism of Dihydro and Tetrahydro Compounds</td>
<td>52</td>
</tr>
<tr>
<td>2.2.5.3 Tautomerism of Other Substituents (Non-prototropic)</td>
<td>52</td>
</tr>
<tr>
<td>2.2.5.4 Ring-Chain and Valence Bond Tautomerism</td>
<td>52</td>
</tr>
<tr>
<td>2.2.6 SUPRAMOLECULAR STRUCTURES</td>
<td>53</td>
</tr>
<tr>
<td>2.3 Structure of Five-membered Rings with One Heteroatom</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1 SURVEY OF POSSIBLE STRUCTURES</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1.1 Monocyclic Compounds</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1.2 Benzo Derivatives</td>
<td>56</td>
</tr>
<tr>
<td>2.3.2 THEORETICAL METHODS</td>
<td>58</td>
</tr>
<tr>
<td>2.3.3 STRUCTURAL METHODS</td>
<td>60</td>
</tr>
<tr>
<td>2.3.3.1 X-Ray Diffraction</td>
<td>60</td>
</tr>
<tr>
<td>2.3.3.2 Microwave Spectroscopy</td>
<td>61</td>
</tr>
<tr>
<td>2.3.3.2.1 Molecular geometry</td>
<td>61</td>
</tr>
<tr>
<td>2.3.3.2.2 Partially and fully saturated compounds</td>
<td>62</td>
</tr>
<tr>
<td>2.3.3.3 1H NMR Spectroscopy</td>
<td>62</td>
</tr>
<tr>
<td>2.3.3.3.1 Parent aromatic compounds</td>
<td>62</td>
</tr>
<tr>
<td>2.3.3.3.2 Substituted aromatic compounds</td>
<td>63</td>
</tr>
<tr>
<td>2.3.3.3.3 Saturated and partially saturated compounds</td>
<td>64</td>
</tr>
<tr>
<td>2.3.3.4 ^{13}C NMR Spectroscopy</td>
<td>65</td>
</tr>
<tr>
<td>2.3.3.5 Heteroatom NMR Spectroscopy</td>
<td>66</td>
</tr>
<tr>
<td>2.3.3.6 UV Spectroscopy</td>
<td>68</td>
</tr>
<tr>
<td>2.3.3.7 IR Spectroscopy</td>
<td>69</td>
</tr>
<tr>
<td>2.3.3.7.1 Ring vibrations</td>
<td>69</td>
</tr>
<tr>
<td>2.3.3.7.2 Substituent vibrations</td>
<td>72</td>
</tr>
<tr>
<td>2.3.3.8 Mass Spectrometry</td>
<td>73</td>
</tr>
<tr>
<td>2.3.3.8.1 Parent monocycles</td>
<td>73</td>
</tr>
<tr>
<td>2.3.3.8.2 Substituted monocycles</td>
<td>74</td>
</tr>
<tr>
<td>2.3.3.8.3 Benzo derivatives</td>
<td>75</td>
</tr>
<tr>
<td>2.3.3.8.4 Saturated compounds</td>
<td>75</td>
</tr>
<tr>
<td>2.3.3.9 Photoelectron Spectroscopy</td>
<td>76</td>
</tr>
<tr>
<td>2.3.3.9.1 Parent monocycles</td>
<td>76</td>
</tr>
<tr>
<td>2.3.3.9.2 Substituted compounds</td>
<td>77</td>
</tr>
<tr>
<td>2.3.3.9.3 Reduced compounds</td>
<td>77</td>
</tr>
<tr>
<td>2.3.3.9.4 Core ionization energies</td>
<td>78</td>
</tr>
<tr>
<td>2.3.4 THERMODYNAMIC ASPECTS</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.1 Intermolecular Forces</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.1.1 Melting and boiling points</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.1.2 Solubility</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.1.3 Gas chromatography</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.2 Stability and Stabilization</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.2.1 Thermochemistry and conformation of saturated heterocycles</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.2.2 Aromaticity</td>
<td>79</td>
</tr>
<tr>
<td>2.3.4.3 Conformation</td>
<td>80</td>
</tr>
<tr>
<td>2.3.4.3.1 Aromatic compounds</td>
<td>80</td>
</tr>
<tr>
<td>2.3.4.3.2 Reduced ring compounds</td>
<td>85</td>
</tr>
<tr>
<td>2.3.5 TAUTOMERISM</td>
<td>85</td>
</tr>
<tr>
<td>2.3.5.1 Annular Tautomerism</td>
<td>85</td>
</tr>
<tr>
<td>2.3.5.2 Compounds with a Potential Hydroxy Group</td>
<td>86</td>
</tr>
<tr>
<td>2.3.5.3 Compounds with Two Potential Hydroxy Groups</td>
<td>88</td>
</tr>
<tr>
<td>2.3.5.4 Compounds with Potential Mercapto Groups</td>
<td>89</td>
</tr>
<tr>
<td>2.3.5.5 Compounds with Potential Amino Groups</td>
<td>89</td>
</tr>
<tr>
<td>2.4 Structure of Five-membered Rings with Two or More Heteroatoms</td>
<td>91</td>
</tr>
<tr>
<td>2.4.1 SURVEY OF POSSIBLE STRUCTURES</td>
<td>91</td>
</tr>
<tr>
<td>2.4.1.1 Aromatic Systems without Exocyclic Conjugation</td>
<td>91</td>
</tr>
<tr>
<td>2.4.1.2 Aromatic Systems with Exocyclic Conjugation</td>
<td>92</td>
</tr>
<tr>
<td>2.4.1.3 Non-aromatic Systems</td>
<td>93</td>
</tr>
</tbody>
</table>
2.4.2 THEORETICAL METHODS
 2.4.2.1 Electron Densities and Frontier Orbital Energies 95
 2.4.2.2 Other Applications of Theory 97

2.4.3 STRUCTURAL METHODS
 2.4.3.1 X-Ray Diffraction 99
 2.4.3.2 Microwave Spectroscopy 99
 2.4.3.2.1 Molecular geometry 99
 2.4.3.2.2 Partially and fully saturated ring systems 103
 2.4.3.3 1H NMR Spectroscopy 103
 2.4.3.4 13C NMR Spectroscopy 108
 2.4.3.5 Nitrogen and Oxygen NMR Spectroscopy 112
 2.4.3.6 UV Spectroscopy 114
 2.4.3.6.1 Parent compounds 114
 2.4.3.6.2 Benzo derivatives 114
 2.4.3.6.3 Effect of substituents 115
 2.4.3.7 IR Spectroscopy 117
 2.4.3.7.1 Aromatic rings without carbonyl groups 117
 2.4.3.7.2 Azole rings containing carbonyl groups 118
 2.4.3.7.3 Substituent vibrations 119
 2.4.3.8 Mass Spectrometry 121
 2.4.3.9 Photoelectron Spectroscopy 121

2.4.4 THERMODYNAMIC ASPECTS
 2.4.4.1 Intermolecular Forces 124
 2.4.4.1.1 Melting and boiling points 124
 2.4.4.1.2 Solubility of heterocyclic compounds 124
 2.4.4.1.3 Gas-liquid chromatography 125
 2.4.4.2 Stability and Stabilization 125
 2.4.4.2.1 Thermochemistry and conformation of saturated heterocycles 125
 2.4.4.2.2 Aromaticity 125
 2.4.4.2.3 Stable carbenes, silylenes, germynes 128
 2.4.4.3 Conformation 129

2.4.5 TAUTOMERISM
 2.4.5.1 Annular Tautomerism 131
 2.4.5.1.1 Prototropy 131
 2.4.5.1.2 Annular Elementotropy 134
 2.4.5.2 Substituent Tautomerism 135
 2.4.5.2.1 Azoles with heteroatoms in the 1,2-positions 135
 2.4.5.2.2 Azoles with heteroatoms in the 1,3-positions 136
 2.4.5.3 Ring-chain Tautomerism 138
 2.4.5.3.1 Without direct involvement of substituents 138
 2.4.5.3.2 With involvement of substituents 138

2.5 Structure of Small and Large Rings 141
 2.5.1 SURVEY OF POSSIBLE STRUCTURES 141
 2.5.1.1 Small Rings 141
 2.5.1.2 Large Rings 141
 2.5.2 THEORETICAL METHODS 141
 2.5.3 STRUCTURAL METHODS 148
 2.5.3.1 X-Ray Diffraction 148
 2.5.3.2 Microwave Spectroscopy 150
 2.5.3.3 1H NMR Spectroscopy 150
 2.5.3.4 Heteronuclear NMR Spectroscopy 152
 2.5.3.5 UV Spectroscopy 153
 2.5.3.5.1 Electronic spectra of small-ring heterocyclic compounds 153
 2.5.3.5.2 Electronic spectra of large-ring heterocyclic compounds 153
 2.5.3.6 IR Spectroscopy 153
 2.5.3.7 Mass Spectrometry 155
 2.5.3.8 Photoelectron Spectroscopy 156
 2.5.4 THERMODYNAMIC ASPECTS 157
 2.5.4.1 Stability and Stabilization 157
 2.5.4.1.1 Ring strain 157
 2.5.4.1.2 Aromaticity and antiaromaticity 157
 2.5.4.2 Conformation 159
 2.5.4.2.1 Small rings 159
 2.5.4.2.2 Large rings 160
PART 3: REACTIVITY OF HETEROCYCLES

3.1 Overview

3.1.1 REACTION TYPES

3.1.2 HETEROCYCLIC REACTIVITY

3.1.3 ARRANGEMENT OF THE REACTIVITY SECTIONS

3.2 Reactivity of Six-membered Rings

3.2.1 REACTIVITY OF AROMATIC RINGS

3.2.1.1 General Survey of Reactivity

3.2.1.1.1 Pyridines

3.2.1.1.2 Azines

3.2.1.1.3 Cationic rings

3.2.1.1.4 Pyridones, N-oxides and related compounds: betainoid rings

3.2.1.1.5 Anionic rings

3.2.1.1.6 Aromaticity and reversion to type

3.2.1.2 Intramolecular Thermal and Photochemical Reactions

3.2.1.2.1 Fragmentation

3.2.1.2.2 Rearrangement to or elimination via Dewar heterobenzenes

3.2.1.2.3 Rearrangement to or via hetero-prismanes and -benzvalenes

3.2.1.2.4 Rearrangement to or via 1,3-bridged heterocycles

3.2.1.2.5 Ring opening

3.2.1.3 Electrophilic Attack at Nitrogen

3.2.1.3.1 Introduction

3.2.1.3.2 Effect of substituents

3.2.1.3.3 Orientation of reaction of azines

3.2.1.3.4 Proton acids

3.2.1.3.5 Metal ions

3.2.1.3.6 Alkyl and aryl halides and related compounds

3.2.1.3.7 Acyl halides and related compounds and Michael-type reactions

3.2.1.3.8 Halogens

3.2.1.3.9 Peroxides

3.2.1.3.10 Aminating agents

3.2.1.3.11 Other Lewis acids

3.2.1.4 Electrophilic Attack at Carbon

3.2.1.4.1 Species undergoing reaction and reaction mechanism

3.2.1.4.2 Reactivity and effect of substituents

3.2.1.4.3 Orientation

3.2.1.4.4 Nitration

3.2.1.4.5 Sulphonation

3.2.1.4.6 Acid-catalyzed hydrogen exchange

3.2.1.4.7 Halogenation

3.2.1.4.8 Acylation and alkylation

3.2.1.4.9 Mercuration

3.2.1.4.10 Nitration, diazo coupling, Mannich reaction, Kolbe reaction and reaction with aldehydes

3.2.1.4.11 Oxidation

3.2.1.5 Attack at Ring Sulfur Atoms

3.2.1.5.1 Reactions with electrophiles

3.2.1.5.2 Reactions with nucleophiles

3.2.1.6 Nucleophilic Attack at Carbon

3.2.1.6.1 Ease of reaction

3.2.1.6.2 Effect of substituents

3.2.1.6.3 Hydroxide ion

3.2.1.6.4 Amines and amide ions

3.2.1.6.5 Sulfur nucleophiles

3.2.1.6.6 Phosphorus nucleophiles

3.2.1.6.7 Halide ions

3.2.1.6.8 Carbon nucleophiles

3.2.1.6.9 Chemical reduction

3.2.1.7 Nucleophilic Attack at Ring Nitrogen

3.2.1.8 Nucleophilic Attack at Hydrogen attached to Ring Carbon or Ring Nitrogen

3.2.1.8.1 Metallation at a ring carbon atom

3.2.1.8.2 Hydrogen exchange at ring carbon in neutral azines, N-oxides and azinones

3.2.1.8.3 Hydrogen exchange at ring carbon in azinium cations

3.2.1.8.4 Proton loss from a ring nitrogen atom

3.2.1.9 Reactions with Radicals and with Electron-deficient Species; Reactions at Surfaces
3.2.1.9.1 Carbenes and nitrenes 223
3.2.1.9.2 Free radical attack at ring carbon atoms 223
3.2.1.9.3 Electrochemical reactions and reactions with free electrons 225
3.2.1.9.4 Other reactions at surfaces 226
3.2.1.10 Intermolecular Reactions with Cyclic Transition States 227
3.2.1.10.1 Introduction 227
3.2.1.10.2 Heterocycles as inner dienes in [2 + 4] cycloaddition 227
3.2.1.10.3 Heterocycles as inner dienes in [1 + 4] cycloaddition 232
3.2.1.10.4 Heterocycles as 1,3-dipoles 232
3.2.1.10.5 Heterocycles as dienophiles 234
3.2.1.10.6 [2 + 2] Cycloaddition 235
3.2.1.10.7 Heterocycles as 4π component in [4 + 4] cycloaddition 235

3.2.2 REACTIONS OF NON-AROMATIC COMPOUNDS 235
3.2.2.1 Eight π-electron Systems: 1,2- and 1,4-Dioxins, -Oxathiins and -Dithiins 236
3.2.2.1.1 Intramolecular thermolysis and photolysis reactions 236
3.2.2.1.2 Reactions with electrophiles 236
3.2.2.1.3 Reactions with nucleophiles 237
3.2.2.2 Thiabenzenes and Related Compounds 237
3.2.2.3 Dihydro Compounds 238
3.2.2.3.1 Introduction 238
3.2.2.3.2 Tautomerism 239
3.2.2.3.3 Aromatization 239
3.2.2.3.4 Electron loss to form radicals 242
3.2.2.3.5 Electrocyclic ring opening 243
3.2.2.3.6 Proton loss to an eight π-electron conjugated system 244
3.2.2.3.7 Electrophilic substitution 244
3.2.2.3.8 Cycloaddition reactions 245
3.2.2.3.9 Other reactions 246
3.2.2.4 Tetra- and Hexa-hydro Compounds 246
3.2.2.4.1 Tautomeric equilibria 246
3.2.2.4.2 Aromatization 246
3.2.2.4.3 Ringfission 246
3.2.2.4.4 Other reactions 247
3.2.2.4.5 Stereochemistry 248

3.2.3 REACTIONS OF SUBSTITUENTS 248
3.2.3.1 General Survey of Reactivity of Substituents on Ring Carbon Atoms 248
3.2.3.1.1 The carbonyl analogy 248
3.2.3.1.2 Effect of number, type and orientation of heteroatoms 249
3.2.3.1.3 The effect of one substituent on the reactivity of another 251
3.2.3.1.4 Reactions of substituents not directly attached to the heterocyclic ring 251
3.2.3.2 Benzenoid Rings 252
3.2.3.2.1 Fused benzene rings: unsubstituted 252
3.2.3.2.2 Fused benzene rings: substituted 254
3.2.3.3 Alkyl Groups 256
3.2.3.3.1 Reactions similar to those of toluene 256
3.2.3.3.2 Alkyl groups: reactions via proton loss 256
3.2.3.3.3 Alkyazines: reactions involving essentially complete anion formation 256
3.2.3.3.4 Alkyazines: reactions involving traces of reactive anions or traces of methylene bases 257
3.2.3.3.5 Alkyl-azonium and -pyrylium compounds 259
3.2.3.3.6 Tautomerism of alkyl derivatives 261
3.2.3.4 Further Carbon Functional Groups 261
3.2.3.4.1 Aryl groups 261
3.2.3.4.2 Carboxylic acids and derivatives 262
3.2.3.4.3 Aldehydes and ketones 264
3.2.3.4.4 Other substituted alkyl groups 264
3.2.3.4.5 Vinyl groups 265
3.2.3.5 Amino and Imino Groups 265
3.2.3.5.1 Orientation of reactions of amino-pyridines and -azines with electrophiles 265
3.2.3.5.2 Reaction of aminooazines with electrophiles at the amino group 266
3.2.3.5.3 Diazotization of amino compounds 266
3.2.3.5.4 Reactions of amino compounds with nucleophiles 267
3.2.3.5.5 Amino-imino tautomerism 269
3.2.3.6 Other N-Linked Substituents 269
3.2.3.6.1 Nitro groups 269
3.2.3.6.2 Nitramino compounds 270
3.2.3.6.3 Hydrazino groups 270
3.2.3.6.4 Azides 271
3.2.3.6.5 Nitroso groups 272
3.2.3.7 Hydroxy and Oxo Groups 272
3.2.3.7.1 Hydroxy groups and hydroxy-oxo tautomeric equilibria 272
3.2.3.7.2 Pyridones, pyrones, thiinones, azinones, etc.: general pattern of reactivity 272
Detailed Contents

3.2.3.7.3 Pyridones, pyrones and azinones: electrophilic attack at carbonyl oxygen 214
3.2.3.7.4 Pyridones, pyrones and azinones: nucleophilic displacement of carbonyl oxygen 274
3.2.3.7.5 Heterocyclic quinones 276
3.2.3.8 Other O-Linked Substituents 276
3.2.3.8.1 Alkoxy and arylxoy groups 276
3.2.3.8.2 Acyloxy groups 278
3.2.3.9 S-Linked Substituents 278
3.2.3.9.1 Mercapto-thione tautomerism 278
3.2.3.9.2 Thiiones 279
3.2.3.9.3 Alkylthio, alkylsulfinyl and alkylsulfonyl groups 279
3.2.3.9.4 Sulfonic acid groups 280
3.2.3.10 Halogen Atoms 280
3.2.3.10.1 Pattern of reactivity 280
3.2.3.10.2 Replacement of halogen by hydrogen or a metal (including transmetallation), or by coupling 280
3.2.3.10.3 Reactions via hetarynes 282
3.2.3.10.4 The S$_{ae}$ mechanistic pathway 283
3.2.3.10.5 ANRORC reactions 283
3.2.3.10.6 Nucleophilic displacement by classical S$_{ae}$ mechanism 284
3.2.3.10.7 Nucleophilic displacement with transition metal catalysis 286
3.2.3.11 Metals and Metalloid Derivatives 287
3.2.3.12 Substituents Attached to Ring Nitrogen Atoms 288
3.2.3.12.1 Introduction 288
3.2.3.12.2 Alkyl groups 289
3.2.3.12.3 Other C-linked substituents 291
3.2.3.12.4 N-Linked substituents 291
3.2.3.12.5 O-Linked substituents 293
3.2.3.12.6 Other substituents attached to nitrogen 295
3.2.3.13 Substituents Attached to Ring Sulfur Atoms 296
3.3 Reactivity of Five-membered Rings with One Heteroatom 297
3.3.1 REACTIONS AT HETEROAROMATIC RINGS 297
3.3.1.1 General Survey of Reactivity 297
3.3.1.1.1 Comparison with aliphatic series 297
3.3.1.1.2 Effect of aromaticity 298
3.3.1.2 Thermal and Photochemical Reactions Involving No Other Species 298
3.3.1.3 Electrophilic Attack on Ring Heteroatoms 299
3.3.1.3.1 Pyrrole anions 299
3.3.1.3.2 Thiophenes, selenophenes and tellurophenes 301
3.3.1.4 Electrophilic Attack on Carbon: General Considerations 302
3.3.1.4.1 Relative reactivities of heterocycles 302
3.3.1.4.2 Directing effects of the ring heteroatom 303
3.3.1.4.3 Directing effects of substituents in monocyclic compounds 304
3.3.1.4.4 Directing effects of fused benzene rings 305
3.3.1.4.5 Range of substitution reactions 305
3.3.1.5 Electrophilic Attack on Carbon: Specific Reactions 305
3.3.1.5.1 Proton acids 305
3.3.1.5.2 Nitration 307
3.3.1.5.3 Sulfonation 308
3.3.1.5.4 Halogenation 308
3.3.1.5.5 Acylation 310
3.3.1.5.6 Alkylation 312
3.3.1.5.7 Reactions with aldehydes and ketones 314
3.3.1.5.8 Mercuration 316
3.3.1.5.9 Diazo coupling 316
3.3.1.5.10 Nitrosation 317
3.3.1.5.11 Electrophilic oxidation 318
3.3.1.6 Reactions with Nucleophiles 320
3.3.1.6.1 Deprotonation at nitrogen 320
3.3.1.6.2 Deprotonation at carbon 320
3.3.1.6.3 Reactions of cationic species with nucleophiles 321
3.3.1.6.4 Vicarious nucleophilic substitution and related reactions 322
3.3.1.6.5 Nucleophilic attack on sulfur 323
3.3.1.7 Reactions with Radicals and Electron-deficient Species: Reactions at Surfaces 324
3.3.1.7.1 Carbenes and nitrenes 324
3.3.1.7.2 Free radical attack 325
3.3.1.7.3 Electrochemical reactions 326
3.3.1.7.4 Reactions with free electrons 326
3.3.1.7.5 Catalytic hydrogenation 327
3.3.1.7.6 Reduction by dissolving metals 327
3.3.1.7.7 Desulfurization 328
3.3.1.8 Reactions with Cyclic Transition States 328
3.3.1.8.1 Heterocycles as inner ring dienes 328
3.3.1.8.2 Heterocycles as dienophiles 331
Detailed Contents

3.3.1.8.3 (2 + 2) Cycloaddition reactions

3.3.1.8.4 Other cycloaddition reactions

3.3.2 REACTIVITY OF NON-AROMATIC COMPOUNDS

- **3.3.2.1** Pyrroline and Indolenines
- **3.3.2.2** Thiophene Sulfones and Sulfoxides
- **3.3.2.3** Dihydro Derivatives
 - **3.3.2.3.1** Aromatization of dihydro compounds
 - **3.3.2.3.2** Behavior analogous to aliphatic analogues
 - **3.3.2.3.3** Other reactions
- **3.3.2.4** Tetrahydro Derivatives
- **3.3.2.5** Ring Carbonyl Compounds and their Hydroxy Tautomers
 - **3.3.2.5.1** Survey of structures
 - **3.3.2.5.2** Interconversion and reactivity of tautomeric forms
 - **3.3.2.5.3** Reactions of hydroxy compounds with electrophiles
 - **3.3.2.5.4** Reactions of anions with electrophiles
 - **3.3.2.5.5** Reactions of carbonyl compounds with nucleophiles
 - **3.3.2.5.6** Reductions of carbonyl and hydroxy compounds
- **3.3.2.6** Ring Carbonyl Compounds and their Hydroxy Tautomers
 - **3.3.2.6.1** Survey of structures
 - **3.3.2.6.2** Interconversion and reactivity of tautomeric forms
 - **3.3.2.6.3** Reactions of hydroxy compounds with electrophiles
 - **3.3.2.6.4** Reactions of anions with electrophiles
 - **3.3.2.6.5** Reactions of carbonyl compounds with nucleophiles
 - **3.3.2.6.6** Reductions of carbonyl and hydroxy compounds
- **3.3.3 REACTIVITY OF SUBSTITUENTS**

- **3.3.3.1** General Survey of Reactivity
 - **3.3.3.1.1** Reaction types
 - **3.3.3.1.2** Nucleophilic substitution of substituents
- **3.3.3.2** Fused Benzene Rings
 - **3.3.3.2.1** Electrophilic attack
 - **3.3.3.2.2** Nucleophilic attack
 - **3.3.3.2.3** Reactions with electrons
 - **3.3.3.2.4** Reactions of substituents on benzene rings
- **3.3.3.3** Other C-Linked Substituents
 - **3.3.3.3.1** Alkyl groups
 - **3.3.3.3.2** Vinyl groups
 - **3.3.3.3.3** Substituted alkyl groups: general
 - **3.3.3.3.4** Halomethyl
 - **3.3.3.3.5** Hydroxymethyl
 - **3.3.3.3.6** Aminomethyl
 - **3.3.3.3.7** Carboxylic acids, esters and anhydrides
 - **3.3.3.3.8** Acyl groups
- **3.3.3.4** N-Linked Substituents
 - **3.3.3.4.1** Nitro
 - **3.3.3.4.2** Amino
 - **3.3.3.4.3** Azides
- **3.3.3.5** O-Linked Substituents
 - **3.3.3.5.1** Hydroxymethyl
 - **3.3.3.5.2** Aminomethyl
 - **3.3.3.5.3** Carboxylic acids, esters and anhydrides
- **3.3.3.6** S-Linked Substituents
 - **3.3.3.6.1** Thiomethyl
 - **3.3.3.6.2** Thioalkyl groups
 - **3.3.3.6.3** Thiocarbamyl
 - **3.3.3.6.4** Thionoalkyl groups
- **3.3.3.7** Halo Groups
 - **3.3.3.7.1** Nucleophilic displacement
 - **3.3.3.7.2** Reductive dehalogenation
 - **3.3.3.7.3** Rearrangement
 - **3.3.3.7.4** Formation of Grignard reagents
- **3.3.3.8** Metallo Groups
 - **3.3.3.8.1** General
 - **3.3.3.8.2** Formation of C-C bonds
 - **3.3.3.8.3** Formation of C-O bonds
 - **3.3.3.8.4** Formation of C-S bonds
 - **3.3.3.8.5** Formation of C-N bonds
 - **3.3.3.8.6** Formation of C-halogen bonds
 - **3.3.3.8.7** Ring-opening reactions
 - **3.3.3.8.8** Palladium- and nickel-catalyzed cross-coupling reactions
 - **3.3.3.8.9** Mercury derivatives
 - **3.3.3.9** Substituents Attached to the Pyrrole Nitrogen Atom
 - **3.3.3.10** Substituents Attached to the Thiophene Sulfur Atom

3.4 Reactivity of Five-membered Rings with Two or More Heteroatoms

3.4.1 REACTIONS AT HETEROAROMATIC RINGS

- **3.4.1.1** General Survey of Reactivity
- **3.4.1.1.1** Reactivity of neutral azoles
- **3.4.1.1.2** Azolium salts
- **3.4.1.1.3** Azole anions
- **3.4.1.1.4** Azoliones, azolinetones, azolinimines
- **3.4.1.1.5** N-Oxides, N-imides, N-ylides of azoles
- **3.4.1.2** Thermal and Photochemical Reactions Formally Involving No Other Species
 - **3.4.1.2.1** Thermal fragmentation
 - **3.4.1.2.2** Photochemical fragmentation
Detailed Contents

3.4.1.2.3 Equilibria with open-chain compounds 373
3.4.1.2.4 Rearrangement to other heterocyclic species 374
3.4.1.2.5 Polymerization 375

3.4.1.3 Electrophilic Attack at Nitrogen

3.4.1.3.1 Introduction 375
3.4.1.3.2 Reaction sequence 376
3.4.1.3.3 Orientation in azole rings containing three or four heteroatoms 376
3.4.1.3.4 Effect of azole ring structure and of substituents 377
3.4.1.3.5 Proton acids on neutral azoles: basicity of azoles 377
3.4.1.3.6 Proton acids on azole anions: acidity of azoles 379
3.4.1.3.7 Basicity and acidity in gas phase 379
3.4.1.3.8 Metal ions 380
3.4.1.3.9 Alkyl halides and related compounds: azoles without a free NH group 381
3.4.1.3.10 Alkyl halides and related compounds: compounds with a free NH group 383
3.4.1.3.11 Acyl halides and related compounds 385
3.4.1.3.12 Heterogens 386
3.4.1.3.13 Peroxidation 386
3.4.1.3.14 Aminating agents 387
3.4.1.3.15 Other Lewis acids 388

3.4.1.4 Electrophilic Attack at Carbon

3.4.1.4.1 Reactivity and orientation 388
3.4.1.4.2 Nitration 389
3.4.1.4.3 Sulfonation 390
3.4.1.4.4 Acid-catalyzed hydrogen exchange 390
3.4.1.4.5 Halogenation 391
3.4.1.4.6 Acylation, formylation and alkylation 392
3.4.1.4.7 Mercuration 392
3.4.1.4.8 Diazo coupling 393
3.4.1.4.9 Nitrosation 394
3.4.1.4.10 Reactions with aldehydes and ketones 394
3.4.1.4.11 Oxidation 395

3.4.1.5 Attack at Sulfur

3.4.1.5.1 Electrophilic attack 396
3.4.1.5.2 Nucleophilic attack 397

3.4.1.6 Nucleophilic Attack at Carbon

3.4.1.6.1 Hydroxide ion and other O-nucleophiles 398
3.4.1.6.2 Amines and amide ions 401
3.4.1.6.3 S-Nucleophiles 403
3.4.1.6.4 Halide ions 403
3.4.1.6.5 Carbon ions 404
3.4.1.6.6 Reduction by complex hydrates 406
3.4.1.6.7 Phosphorus nucleophiles 407

3.4.1.7 Nucleophilic Attack at Nitrogen Heteroatom 407

3.4.1.8 Nucleophilic Attack at Hydrogen Attached to Ring Carbon or Ring Nitrogen 408

3.4.1.8.1 Metallation at a ring carbon atom 408
3.4.1.8.2 Hydrogen exchange at ring carbon in neutral azoles 409
3.4.1.8.3 Hydrogen exchange at ring carbon in azolium ions and dimerization 410
3.4.1.8.4 C-Substitution via electrophilic attack at N, deprotonation and rearrangement 411
3.4.1.8.5 Formation and reactions of stable carbenes 412
3.4.1.8.6 Ring cleavage via C-deprotonation 412
3.4.1.8.7 Proton loss from a ring nitrogen atom 413

3.4.1.9 Reactions with Radicals and Electron-deficient Species; Reactions at Surfaces 413

3.4.1.9.1 Carbenes and nitrenes 413
3.4.1.9.2 Free radical attack at the ring carbon atoms 414
3.4.1.9.3 Thiocation 415
3.4.1.9.4 Electrochemical reactions and reactions with free electrons 415
3.4.1.9.5 Other reactions at surfaces (catalytic hydrogenation and reduction by dissolving metals) 417

3.4.1.10 Reactions with Cyclic Transition States 418

3.4.1.10.1 Heterocycles as inner-ring dienes 419
3.4.1.10.2 Heterocycles derivatives as inner-outer ring dienes 422
3.4.1.10.3 Heterocycles derivatives as outer-ring dienes 422
3.4.1.10.4 Heterocycles as dienophiles 423
3.4.1.10.5 [2 + 2] Cycloaddition reactions 424
3.4.1.10.6 Other cycloaddition reactions 424

3.4.1.10.7 Formation and reactions of cycloaddition products 425

3.4.2 REACTIONS OF NON-AROMATIC COMPOUNDS 425

3.4.2.1 Isomers of Aromatic Derivatives 425
3.4.2.1.1 Compounds not in tautomeric equilibrium with aromatic derivatives 425
3.4.2.1.2 Compounds in tautomeric equilibrium with aromatic derivatives 426

3.4.2.2 Dihydro Compounds 427
3.4.2.2.1 Tautomerism 427
3.4.2.2.2 Aromatization 427
3.4.2.2.3 Ring contraction 428
3.4.2.4 Other reactions
3.4.2.3 Tetrahydro Compounds
3.4.2.3.1 Aromatization
3.4.2.3.2 Ring fission
3.4.2.3.3 Other reactions

3.4.3 REACTIONS OF SUBSTITUENTS

3.4.3.1 General Survey of Substituents on Carbon
3.4.3.1.1 Substituent environment
3.4.3.1.2 The carbonyl analogy
3.4.3.1.3 Two heteroatoms in the 1,3-positions
3.4.3.1.4 Two heteroatoms in the 1,2-positions
3.4.3.1.5 Three heteroatoms
3.4.3.1.6 Four heteroatoms
3.4.3.1.7 The effect of one substituent on the reactivity of another
3.4.3.1.8 Reactions of substituents not directly attached to the heterocyclic ring
3.4.3.1.9 Reactions of substituents involving ring transformations

3.4.3.2 Fused Benzene Rings
3.4.3.2.1 Electrophilic substitution
3.4.3.2.2 Oxidative degradation
3.4.3.2.3 Nucleophilic attack
3.4.3.2.4 Rearrangements

3.4.3.3 Alkyl Groups
3.4.3.3.1 Reactions similar to those of toluene
3.4.3.3.2 Alkylazoles: reactions involving essentially complete anion formation
3.4.3.3.3 Reactions of alkylazoles involving traces of reactive anions
3.4.3.3.4 C-Alkyl-azoliums, -dithiolyliums, etc.

3.4.3.4 Other C-Linked Substituents
3.4.3.4.1 Aryl groups: electrophilic substitution
3.4.3.4.2 Aryl groups: other reactions
3.4.3.4.3 Carboxylic acids
3.4.3.4.4 Aldehydes and ketones
3.4.3.4.5 Vinyl and ethynyl groups
3.4.3.4.6 Ring fission

3.4.3.5 Aminoazoles
3.4.3.5.1 Dimroth rearrangement
3.4.3.5.2 Reactions with electrophiles (except nitrous acid)
3.4.3.5.3 Reaction with nitrous acid. Diazotization
3.4.3.5.4 Deprotonation of aminoazoles
3.4.3.5.5 Aminoazolium ions/neutral imines
3.4.3.5.6 Oxidation of aminoazoles

3.4.3.6 Other N-Linked Substituents
3.4.3.6.1 Nitro groups
3.4.3.6.2 Azidoazoles

3.4.3.7 O-Linked Substituents
3.4.3.7.1 Tautomeric forms: interconversion and modes of reaction
3.4.3.7.2 2-Hydroxyazoles, heteroatoms-1,3
3.4.3.7.3 3-Hydroxyazoles, heteroatoms-1,2
3.4.3.7.4 5-Hydroxyazoles, heteroatoms-1,2
3.4.3.7.5 4- and 5-Hydroxyazoles, heteroatoms-1,3 and 4-hydroxyazoles, heteroatoms-1,2
3.4.3.7.6 Hydroxy derivatives with three heteroatoms
3.4.3.7.7 Alkoxy and arylxoy groups

3.4.3.8 S-Linked Substituents
3.4.3.8.1 Mercapto compounds: tautomerism
3.4.3.8.2 Thiones
3.4.3.8.3 Alkylthio groups
3.4.3.8.4 Sulfonic acid groups

3.4.3.9 Halogen Atoms
3.4.3.9.1 Nucleophilic displacements: neutral azoles
3.4.3.9.2 Nucleophilic displacements: haloazoliums
3.4.3.9.3 Other reactions

3.4.3.10 Metals and Metalloid-linked Substituents
3.4.3.11 Fused Heterocyclic Rings

3.4.3.12 Substituents Attached to Ring Nitrogen Atoms
3.4.3.12.1 N-Linked azole as a substituent
3.4.3.12.2 Aryl groups
3.4.3.12.3 Alkyl and alkenyl groups
3.4.3.12.4 Acyl and carboxy groups
3.4.3.12.5 N-Amino group
3.4.3.12.6 N-Nitro group
3.4.3.12.7 N-Hydroxy groups and N-oxides
3.4.3.12.8 N-Halo groups
3.4.3.12.9 N-Silicon, phosphorus, sulfur and related groups
3.5 Reactivity of Small and Large Rings

3.5.1 GENERAL SURVEY
3.5.1.1 Neutral Molecules
3.5.1.2 Cations
3.5.1.3 Anions
3.5.1.4 Radicals

3.5.2 THERMAL AND PHOTOCHEMICAL REACTIONS, NOT FORMALLY INVOLVING OTHER SPECIES
3.5.2.1 Fragmentation Reactions
3.5.2.2 Rearrangements

3.5.3 ELECTROPHILIC ATTACK ON RING HETEROATOMS
3.5.3.1 Protonation
3.5.3.2 Complex formation
3.5.3.3 Alkylation and Acylation

3.5.4 NUCLEOPHILIC ATTACK ON RING HETEROATOMS

3.5.5 NUCLEOPHILIC ATTACK ON RING CARBON ATOMS
3.5.5.1 Reactions of Three-membered Rings
3.5.5.2 Reactions of Four-membered Rings
3.5.5.3 Reactions of Carbonyl Derivatives of Four-membered Rings
3.5.5.4 Large Rings

3.5.6 NUCLEOPHILIC ATTACK ON PROTONS ATTACHED TO RING ATOMS

3.5.7 ATTACK BY RADICALS OR ELECTRON-DEFICIENT SPECIES. OXIDATION AND REDUCTION
3.5.7.1 Reactions with Radicals and Carbenes
3.5.7.2 Oxidation
3.5.7.3 Reduction

3.5.8 REACTIONS WITH CYCLIC TRANSITION STATES
3.5.8.1 [2 + 4] Cycloadditions
3.5.8.1.1 Heterocycles as dienophiles
3.5.8.1.2 Heterocycles as dienes
3.5.8.2 1,3-Dipolar Cycloadditions

3.5.9 REACTIVITY OF TRANSITION METAL COMPLEXES

3.5.10 REACTIVITY OF SUBSTITUENTS ATTACHED TO HETEROATOM OR RING CARBON ATOMS
3.5.10.1 C-Linked Substituents
3.5.10.2 N-Linked Substituents

PART 4: SYNTHESIS OF HETEROCYCLES

4.1 Overview

4.1.1 AIMS AND ORGANIZATION

4.1.2 RING FORMATION FROM TWO COMPONENTS
4.1.2.1 By Reaction Between Electrophilic and Nucleophilic Carbons
4.1.2.2 Ring Formation via Cycloaddition
4.1.2.2.1 [2 + 2] Cycloadditions
4.1.2.2.2 1,3-Dipolar cycloadditions
4.1.2.2.3 Diels-Alder reactions

4.1.3 RING CLOSURE OF A SINGLE COMPONENT
4.1.3.1 By Reaction between Electrophilic and Nucleophilic Centers
4.1.3.2 Electrocyclic Reactions
4.1.3.3 By Radical, Carbene or Nitrene Intermediates
4.1.3.4 By Intramolecular Cycloadditions

4.1.4 MODIFICATION OF AN EXISTING RING
4.1.4.1 Ring Atom Interchange
4.1.4.2 Incorporation of New Ring Atoms: No Change in Ring Size
4.1.4.3 Ring Expansions
4.1.4.4 Ring Constructions
4.1.4.5 Ring Closure with Simultaneous Ring Opening
4.2 Synthesis of Monocyclic Rings with One Heteroatom

4.2.1 RINGS CONTAINING NO ENDOCYCLIC DOUBLE BONDS

4.2.1.1 From Acyclic Compounds by Concerted Formation of Two Bonds

4.2.1.1.1 Three-membered rings
4.2.1.1.2 Four-membered rings
4.2.1.1.3 Five-membered rings

4.2.1.2 From Acyclic Compounds by Formation of One or Two C-Z Bonds

4.2.1.2.1 Three-membered rings
4.2.1.2.2 Four-membered rings
4.2.1.2.3 Five-membered rings
4.2.1.2.4 Six-membered rings
4.2.1.2.5 Larger rings

4.2.1.3 From Acyclic Compounds by Formation of One C-C Bond

4.2.1.4 From Carbocyclic Compounds

4.2.1.5 From Other Heterocyclic Compounds

4.2.2 RINGS CONTAINING ONE ENDOCYCLIC DOUBLE BOND

4.2.2.1 From Acyclic Compounds by Concerted Formation of Two Bonds

4.2.2.2 From Acyclic Compounds by Formation of One or Consecutive Formation of Two C-Z Bond(s)

4.2.2.2.1 Z atom component acting as nucleophile
4.2.2.2.2 Z atom component acting as electrophile

4.2.2.3 From Carbocycles

4.2.2.4 From Heterocycles

4.2.3 RINGS CONTAINING TWO ENDOCYCLIC DOUBLE BONDS

4.2.3.1 Overview

4.2.3.2 Synthesis of Pyrroles, Furans and Thiophenes by Substituent Introduction or Modification

4.2.3.3 Synthesis of Pyrroles, Furans and Thiophenes from Acyclic Precursors

4.2.3.3.1 From C-Z or C₄ units
4.2.3.3.2 From C₁ZC or C₄ and CZ units
4.2.3.3.3 From C₃ and ZCC units
4.2.3.3.4 From C₃ and CZC units
4.2.3.3.5 From two C2 and Z units

4.2.3.4 Synthesis of Pyrans, Dihydropyridines and their Thio and Oxo Derivatives from Acyclic Precursors

4.2.3.4.1 From C₅ units
4.2.3.4.2 With C-C bond formation

4.2.3.5 Synthesis of Four-, Five- and Six-membered Rings from Carbocyclic or Heterocyclic Precursors

4.2.3.5.1 With ring expansion
4.2.3.5.2 No change in ring size
4.2.3.5.3 With ring contraction

4.2.3.6 Synthesis of Seven- and Eight-membered Rings

4.2.4 RINGS CONTAINING THREE ENDOCYCLIC DOUBLE BONDS

4.2.4.1 Synthetic Methods for Substituted Pyridines

4.2.4.2 Synthesis of Six-membered Rings from Acyclic Compounds

4.2.4.2.1 From or via pentane-1,5-diones
4.2.4.2.2 From pent-2-ene-1,5-diones
4.2.4.2.3 Other methods

4.2.4.3 Synthesis of Six-membered Rings from Other Heterocycles

4.2.4.3.1 From five-membered rings
4.2.4.3.2 From other six-membered rings

4.2.4.4 Synthesis of Seven-membered and Larger Rings

4.3 Synthesis of Monocyclic Rings with Two or More Heteroatoms

4.3.1 SUBSTITUENT INTRODUCTION AND MODIFICATION

4.3.1.1 Overview

4.3.1.2 Substituent Introduction and Modification in Azoles
4.3.1.3 Substituent Introduction and Modification in Azines

4.3.2 TWO HETEROATOMS IN THE 1,2-POSITIONS

4.3.2.1 Three-membered Rings
4.3.2.2 Four-membered Rings

4.3.2.2.1 1,2-Diazetidines
4.3.2.2.2 1,2-Oxazetidines
4.3.2.2.3 1,2-Thiazetidines
4.3.2.2.4 1,2-Dioxetanes
4.3.2.2.5 1,2-Oxathietanes
4.3.2.2 1,2-Dithietanes
- **555**

4.3.2.3 Five-membered Rings: Pyrazoles, Isoxazoles, Isothiazoles, etc.
- **556**
 - **4.3.2.3.1** Synthesis from hydrazine, hydroxylamine and hydrogen disulfide
- **558**
 - **4.3.2.3.2** Synthesis by Z-Z bond formation
- **559**
 - **4.3.2.3.3** Other methods from acyclic precursors
- **560**
 - **4.3.2.3.4** From other heterocycles

4.3.2.4 Six-membered Rings: Pyridazines, 1,2-Oxazines, etc.
- **561**
 - **4.3.2.4.1** Synthesis from hydrazine or hydroxylamine derivatives
- **562**
 - **4.3.2.4.2** By cycloaddition reactions
- **563**
 - **4.3.2.4.3** Other methods from acyclic precursors
- **563**
 - **4.3.2.4.4** From other heterocycles

4.3.2.5 Seven-membered Rings
- **564**
 - **4.3.2.5.1** 1,2-Diazepines
- **566**
 - **4.3.2.5.2** 1,2-Oxazepines and 1,2-thiazepines
- **567**
 - **4.3.2.5.3** 1,2-Dioxepins and 1,2-dithiepins

4.3.3 TWO HETEROATOMS IN THE 1,3-POSITIONS
- **566**
 - **4.3.3.1 Four-membered Rings**
 - **566**
 - **4.3.3.1.1** 1,3-Diazetidines
 - **566**
 - **4.3.3.1.2** 1,3-Oxazetidines
 - **567**
 - **4.3.3.1.3** 1,3-Thiazetidines
 - **567**
 - **4.3.3.1.4** 1,3-Dithietanes
 - **568**
 - **4.3.3.2 Five-membered Rings: Imidazoles, Oxazoles, Thiazoles, Dithiolium Salts and Derivatives**
 - **569**
 - **4.3.3.2.1** Overview
 - **569**
 - **4.3.3.2.2** Synthesis from C$_2$ + ZCZ' components
 - **569**
 - **4.3.3.2.3** Synthesis of imidazoles, oxazoles and thiazoles from acylamino ketones
 - **569**
 - **4.3.3.2.4** Other syntheses of imidazoles, oxazoles, thiazoles, dithiolyliums and oxathiolyliums by cyclization of C$_2$ZCZ' components
 - **570**
 - **4.3.3.2.5** Synthesis of imidazoles, oxazoles and thiazoles by C-C bond formation or 1,3-dipolar addition
 - **570**
 - **4.3.3.2.6** Synthesis of azolinones and reduced rings from acyclic precursors
 - **572**
 - **4.3.3.2.7** Synthesis from heterocycles
 - **573**
 - **4.3.3.3 Six-membered Rings**
 - **576**
 - **4.3.3.3.1** C$_3$ + ZCZ type
 - **576**
 - **4.3.3.3.2** ZC$_3$Z + C(5 + 1) and (6 + 0) cyclizations
 - **577**
 - **4.3.3.3.3** [4 + 2] Cyclizations
 - **577**
 - **4.3.3.3.4** Syntheses from heterocycles
 - **578**
 - **4.3.3.4 Seven-membered Rings**
 - **579**
 - **4.3.3.4.1** 1,3-Diazepines
 - **579**
 - **4.3.3.4.2** 1,3-Oxazepines and 1,3-thiazepines
 - **579**
 - **4.3.3.4.3** 1,3-Dioxepins and 1,3-dithiepins

4.3.4 TWO HETEROATOMS IN THE 1,4-POSITIONS
- **581**
 - **4.3.4.1 Six-membered Rings**
 - **581**
 - **4.3.4.1.1** Pyrazines from acyclic compounds
 - **582**
 - **4.3.4.1.2** 1,4-Dioxins, 1,4-dithiins, 1,4-oxazines and 1,4-thiazines
 - **584**
 - **4.3.4.1.3** Non-aromatic rings from acyclic compounds
 - **584**
 - **4.3.4.1.4** From heterocyclic precursors
 - **584**
 - **4.3.4.2 Seven-membered Rings**
 - **585**
 - **4.3.4.2.1** 1,4-Diazepines
 - **585**
 - **4.3.4.2.2** 1,4-Oxazepines and 1,4-thiazepines
 - **585**
 - **4.3.4.2.3** 1,4-Dioxepins and 1,4-dithiepins

4.3.5 THREE HETEROATOMS IN THE 1,2,3-POSITIONS
- **587**
 - **4.3.5.1 Three- and Four-membered Rings**
 - **588**
 - **4.3.5.2 Five-membered Rings**
 - **588**
 - **4.3.5.2.1** Formation of a bond between two of the heteroatoms
 - **588**
 - **4.3.5.2.2** Other methods
 - **589**
 - **4.3.5.3 Six-membered Rings**

4.3.6 THREE HETEROATOMS IN THE 1,2,4-POSITIONS
- **591**
 - **4.3.6.1 Five-membered Rings**
 - **591**
 - **4.3.6.1.1** From acyclic intermediates containing the preformed Z-Z' bond
 - **591**
 - **4.3.6.1.2** From acyclic intermediates by formation of the Z-Z' bond
 - **593**
 - **4.3.6.1.3** From heterocycles
 - **594**
 - **4.3.6.2 Six-membered Rings**
 - **596**
 - **4.3.6.2.1** 1,2,4-Triazines
 - **597**
 - **4.3.6.2.2** Rings containing O or S atoms
 - **598**
 - **4.3.6.3 Seven-membered Rings**
 - **598**
 - **4.3.6.3.1** Heteroatoms in the 1,2,4-positions
 - **599**
 - **4.3.6.3.2** Seven-membered rings with heteroatoms in the 1,2,5-positions

4.3.7 THREE HETEROATOMS IN THE 1,3,5-POSITIONS
- **599**
 - **4.3.7.1 s-Triazines**
4.3.7.2 Compounds Containing O or S Atoms 600
4.3.7.3 Synthesis from Heterocyclic Precursors 601
4.3.7.4 Seven-membered Rings 602

4.3.8 FOUR OR MORE HETEROATOMS 602
4.3.8.1 Five-membered Rings 602
4.3.8.2 Six-membered Rings 603

4.4 Synthesis of Bicyclic Ring Systems without Ring Junction Heteroatoms 605

4.4.1 SYNTHESIS BY SUBSTITUENT INTRODUCTION AND MODIFICATION 605
4.4.1.1 In the Heterocyclic Ring 605
4.4.1.2 In the Benzene Ring 605

4.4.2 ONE HETEROATOM ADJACENT TO RING JUNCTION 605
4.4.2.1 Three- and Four-membered Rings 605
 4.4.2.1.1 Three-membered rings 605
 4.4.2.1.2 Four-membered rings 606
4.4.2.2 Five-membered Rings 607
 4.4.2.2.1 Survey of syntheses for indoles, benzo[1]furans and benzo[1]thiophenes 607
 4.4.2.2.2 Ring closure by formation of Z-C(2) bond 607
 4.4.2.2.3 Ring closure by formation of ring-C bond 610
 4.4.2.2.4 Ring closure by formation of C(2)-C(3) bond 614
 4.4.2.2.5 Ring closure by formation of ring-Z bond 615
 4.4.2.2.6 From other heterocycles 615
4.4.2.3 Six-membered Rings 616
 4.4.2.3.1 Survey of synthetic methods for quinolines, benzo[2]pyrans and their derivatives 616
 4.4.2.3.2 Ring closure of o-substituted anilines or phenols 616
 4.4.2.3.3 Formation of a C-C bond by reaction of a multiple bond with a benzene ring 618
 4.4.2.3.4 Synthesis via cycloaddition reactions 621
 4.4.2.3.5 Synthesis from heterocycles 621
 4.4.2.4 Seven-membered and Larger Rings 622

4.4.3 ONE HETEROATOM NOT ADJACENT TO RING JUNCTION 623
4.4.3.1 Five-membered Rings: Isoindoles and Related Compounds 623
4.4.3.2 Six-membered Rings 625
 4.4.3.2.1 Overview of ring syntheses of isoquinolines, benzo[c]pyrans and their derivatives 625
 4.4.3.2.2 Ring closure of an o-substituted aniline or phenol 625
 4.4.3.2.3 From a β-phenethylamine 626
 4.4.3.2.4 From a benzylamine 627
 4.4.3.3 Seven-membered and Larger Rings 627

4.4.4 TWO HETEROATOMS 1,2 TO RING JUNCTION 627
4.4.4.1 Four-membered Rings 627
4.4.4.2 Five-membered Rings 628
 4.4.4.2.1 Indazoles 628
 4.4.4.2.2 Anthranils, benzisothiazoles and saccharins 629
4.4.4.3 Six-membered Rings 629
 4.4.4.3.1 Cinnolines 629
 4.4.4.3.2 Rings containing O or S atoms 631
 4.4.4.4 Seven-membered Rings 631

4.4.5 TWO HETEROATOMS 1,3 TO RING JUNCTION 632
4.4.5.1 Five-membered Rings 632
 4.4.5.1.1 Ring closure of o-disubstituted benzene or hetarene 632
 4.4.5.1.2 Other methods 633
4.4.5.2 Six-membered Rings 634
 4.4.5.2.1 Quinazolines and azinopyrimidines by cyclization procedures 634
 4.4.5.2.2 Rings containing O or S atoms 635
 4.4.5.2.3 From other heterocycles 636
4.4.5.3 Seven-membered Rings 637
 4.4.5.3.1 Seven-membered rings with heteroatoms 1,3 to ring junction 637
 4.4.5.3.2 Seven-membered rings with heteroatoms 2,4 to ring junction 638

4.4.6 TWO HETEROATOMS 1,4 TO RING JUNCTION 638
4.4.6.1 Quinoxalines and Azipopyrazines 638
4.4.6.2 1,4-Benzoxazines and 1,4-Benzothiazines 639
4.4.6.3 Rings Containing Oxygen and/or Sulfur Atoms 640
4.4.6.4 Synthesis from Heterocyclic Precursors 641
4.4.6.5 Seven-membered Rings with Two Heteroatoms 1,4 to the Ring Junction 641
 4.4.6.5.1 1,4-Benzodiazepines 641
 4.4.6.5.2 1,4- and 4,1-Benzoxazepines, 1,4- and 1,5-benzothiazepines, and 1,4-benzodioxepins 642
4.4.6.6 Seven-membered Rings with Two Heteroatoms 1,5 to the Ring Junction

4.4.7 TWO HETEROATOMS 2,3 TO RING JUNCTION

4.4.7.1 Six-membered Rings
4.4.7.2 Seven-membered Rings

4.4.8 THREE OR MORE HETERATOMS

4.4.8.1 Five-membered Heterocyclic Rings
4.4.8.2 Six-membered Heterocyclic Rings
4.4.8.2.1 Three heteroatoms in the 1,2,3-positions
4.4.8.2.2 Three heteroatoms in the 1,2,4- or 1,3,4-positions
4.4.8.2.3 Four heteroatoms
4.4.8.3 Seven-membered and Larger Rings
4.4.8.3.1 Heteroatoms 1,2,4 to ring junction
4.4.8.3.2 Heteroatoms 1,2,5 to ring junction
4.4.8.3.3 Heteroatoms 1,3,4 to ring junction
4.4.8.3.4 Heteroatoms 1,3,5 to ring junction
4.4.8.3.5 Four or more heteroatoms

4.4.8.3.6 Three or more heteroatoms

4.4.8.3.7 Four or more heteroatoms

4.5 Synthesis of Tri- and Poly-cyclic Ring Systems without Ring Junction Heteroatoms

4.5.1 TWO ADJACENT FUSED RINGS, ONE HETERATOM

4.5.1.1 Five-membered Heterocyclic Rings
4.5.1.1.1 Overview of synthetic methods for carbazoles, dibenzofurans and dibenzothiophenes
4.5.1.1.2 Formation of C-C bond
4.5.1.1.3 Formation of C-Z bond
4.5.1.1.4 Miscellaneous methods
4.5.1.2 Six-membered Rings

4.5.2 TWO ADJACENT FUSED RINGS, TWO HETERATOMS

4.5.3 TWO NON-ADJACENT FUSED RINGS, ONE HETERATOM

4.5.4 TWO NON-ADJACENT FUSED RINGS, TWO HETERATOMS

4.5.4.1 Phenazines
4.5.4.2 Phenoxazines and Phenothiazines
4.5.4.3 Dibenzo[1,4]dioxin, Phenoxathiin and Thianthrene
4.5.4.4 Dibenzoepins and Dibenzothiepins

4.5.5 PERI-ANNULATED HETEROCYCLIC SYSTEMS

4.5.6 THREE FUSED RINGS

4.6 Synthesis of Fused Ring Systems with Ring Junction Heteroatoms

4.6.1 FORMATION OF THREE- OR FOUR-MEMBERED RINGS WITH ONE N ATOM AT A RING JUNCTION

4.6.2 FORMATION OF A FIVE-MEMBERED RING WITH ONE N ATOM AT A RING JUNCTION

4.6.2.1 No Other Heteroatoms
4.6.2.1.1 5-5 Systems
4.6.2.1.2 5-6 Systems
4.6.2.2 One Additional Heteroatom
4.6.2.2.1 Pyrazolo-fused systems
4.6.2.2.2 Imidazo-fused systems
4.6.2.2.3 Thiazolo-fused systems
4.6.2.2.4 Oxazolo- and isoxazolo-fused systems
4.6.2.3 Two Other Heteroatoms
4.6.2.3.1 1,2,4-Triazolo[b]-, 1,2,4-thiadiazolo[b]- and 1,3,4-thiadiazolo[b]-fused systems
4.6.2.3.2 1,2,4-Triazolo[c]- and 1,2,4-thiadiazolo[c]-fused systems
4.6.2.3.3 1,2,3-Triazolo[c]-fused systems
4.6.2.4 Three Other Heteroatoms: Fused Tetrazoles

4.6.3 FORMATION OF A SIX-MEMBERED RING WITH ONE N ATOM AT A RING JUNCTION

4.6.3.1 Ring Formation Using a Three-atom Fragment
4.6.3.2 Ring Formation Using a Two-atom Fragment
4.6.3.3 Ring Formation Using a One-atom Fragment
4.6.3.4 Cycloaddition and Ring-Transformation Reactions
4.6.3.5 Other Methods

4.6.4 FORMATION OF A SEVEN-MEMBERED RING WITH ONE N ATOM AT A RING JUNCTION

4.6.5 TWO NITROGEN ATOMS AT A RING JUNCTION

4.6.5.1 Five-membered Rings
4.6.5.2 Six-membered Rings
PART 5: APPENDIXES

Appendix A: Introduction to “Comprehensive Heterocyclic Chemistry - II”

1. **SCOPE, SIGNIFICANCE, AND AIMS**
 - 1.1 Scope
 - 1.2 Significance
 - 1.3 Aims of CHEC and of the Present Work

2. **ARRANGEMENT OF THE WORK IN VOLUMES**
 - 2.1 Relationship of CHEC-II to CHEC
 - 2.2 Arrangement of CHEC-II in Volumes
 - 2.3 Arrangement of CHEC in Volumes

3. **RATIONALE FOR ARRANGEMENT OF MATERIAL IN EACH VOLUME**
 - 3.1 Major Division of Carbocyclic and Heterocyclic Chemistry
 - 3.2 Saturated Heterocyclic Compounds
 - 3.3 Partially Unsaturated Heterocyclic Compounds
 - 3.4 Heteroaromatic Compounds
 - 3.5 Characteristics of Heteroatoms in Rings
 - 3.6 The General Chapters

4. **ORGANIZATION OF INDIVIDUAL MONOGRAPH CHAPTERS**
 - 4.1 Introduction
 - 4.2 Theoretical Methods
 - 4.3 Experimental Structural Methods
 - 4.4 Thermodynamic Aspects
 - 4.5 Reactivity of Fully Conjugated Rings
 - 4.6 Reactivity of Nonconjugated Rings
 - 4.7 Reactivity of Substituents Attached to Ring Carbon Atoms
 - 4.8 Reactivity of Substituents Attached to Ring Heteroatoms
 - 4.9 Ring Syntheses Classified by Number of Ring Atoms in Each Component
 - 4.10 Ring Synthesis by Transformation of Another Ring
 - 4.11 Synthesis of Particular Classes of Compounds and Critical Comparison of the Various Routes Available
 - 4.12 Important Compounds and Applications

5. **THE REFERENCE SYSTEM**

6. **THE INDEXES**
 - 6.1 Author Index
 - 6.2 Ring Index
 - 6.3 Subject Index

Appendix B: Short Contents of “Comprehensive Heterocyclic Chemistry - II”

Appendix C: Short Contents of “Comprehensive Heterocyclic Chemistry”

Appendix D: Miscellaneous (MI) References

Subject Index