CONTENTS

PREFACE

1 INTRODUCTION
1.1 PRELIMINARIES FROM MECHANICS 1
1.2 CLASSIFICATION OF NONLINEARITIES 7
1.3 ORDER SYMBOLS 8
1.4 STRAIGHTFORWARD EXPANSION AND RESONANCES 10
1.5 THE METHOD OF MULTIPLE SCALES 13
1.6 THE METHOD OF AVERAGING 20
1.7 THE TIME-AVERAGED LAGRANGIAN AND VIRTUAL WORK 23
1.8 THE METHOD OF HARMONIC BALANCE 24
1.9 THE METHOD OF NORMAL FORMS 25
1.10 HIGHER APPROXIMATIONS 29
1.10.1 Real-Valued Form 30
1.10.2 Complex-Valued Form 35
1.11 COMMENTS 37

2 TWO-TO-ONE INTERNAL RESONANCE 41
2.1 PHYSICAL EXAMPLES
2.1.1 A Double Pendulum
2.1.2 A Planar Elastic Pendulum
2.1.3 Autoparametric Vibration Absorber
2.1.4 Ships Constrained to Pitch (Heave) and Roll
2.1.5 Arches
2.1.6 Surface Waves in a Basin
2.1.7 Circular Cylindrical Shells
2.1.8 Other Systems

2.2 FREE OSCILLATIONS
2.2.1 Nonresonance Case
2.2.2 Resonance Case
2.2.3 Implication of Internal Resonances on the Linear Identification of Structures
2.2.4 A Control Strategy Based on Internal Resonance

2.3 PRIMARY RESONANCE OF THE SECOND MODE
2.3.1 Fixed-Point Solutions
2.3.2 Stability of the Fixed Points
2.3.3 Scaling of Variables
2.3.4 Force-Response Curves
2.3.5 Frequency-Response Curves
2.3.6 Dynamic Solutions of the Modulation Equations
2.3.7 A Control Strategy Based on the Saturation Phenomenon

2.4 PRIMARY RESONANCE OF THE FIRST MODE
2.4.1 Fixed Points and Their Stability
2.4.2 Frequency-Response Curves
2.4.3 Dynamic Motions

2.5 PRINCIPAL PARAMETRIC RESONANCE OF THE SECOND MODE
2.5.1 Fixed Points and Their Stability
2.5.2 Force- and Frequency-Response Curves
2.5.3 Dynamic Solutions
2.5.4 Experimental Observations with Principal Parametric Resonance
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>Theoretical Results</td>
<td>285</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Experiments</td>
<td>291</td>
</tr>
<tr>
<td>3.6</td>
<td>PRINCIPAL PARAMETRIC RESONANCE IN A NONSEMISIMPLE SYSTEM</td>
<td>297</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Modulation Equations</td>
<td>297</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Equilibrium Solutions and Their Stability</td>
<td>300</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Dynamic Solutions</td>
<td>304</td>
</tr>
<tr>
<td>3.7</td>
<td>FUNDAMENTAL PARAMETRIC RESONANCE IN A NONSEMISIMPLE SYSTEM</td>
<td>307</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Modulation Equations</td>
<td>307</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Equilibrium Solutions</td>
<td>311</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Dynamic Solutions</td>
<td>314</td>
</tr>
<tr>
<td>3.8</td>
<td>COMBINATION PARAMETRIC RESONANCE IN A NONSEMISIMPLE SYSTEM</td>
<td>320</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Modulation Equations</td>
<td>321</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Equilibrium Solutions</td>
<td>324</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Dynamic Solutions</td>
<td>326</td>
</tr>
<tr>
<td>3.9</td>
<td>COMBINED PARAMETRIC AND EXTERNAL EXCITATIONS</td>
<td>333</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Modulation Equations</td>
<td>334</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Equilibrium Solutions</td>
<td>340</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Experiments</td>
<td>342</td>
</tr>
<tr>
<td>4</td>
<td>THREE-TO-ONE INTERNAL RESONANCE</td>
<td>347</td>
</tr>
<tr>
<td>4.1</td>
<td>PHYSICAL EXAMPLES</td>
<td>347</td>
</tr>
<tr>
<td>4.1.1</td>
<td>A Double Pendulum with a Moving Support</td>
<td>347</td>
</tr>
<tr>
<td>4.1.2</td>
<td>A Hinged-Fixed Beam</td>
<td>353</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Longitudinal Vibrations of Beams</td>
<td>363</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Clamped-Clamped Buckled Beams</td>
<td>369</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Other Systems</td>
<td>377</td>
</tr>
<tr>
<td>4.2</td>
<td>PRIMARY RESONANCE OF THE FIRST MODE</td>
<td>379</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Equilibrium Solutions</td>
<td>381</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Dynamic Solutions</td>
<td>383</td>
</tr>
<tr>
<td>4.3</td>
<td>PRIMARY RESONANCE OF THE SECOND MODE</td>
<td>392</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Equilibrium Solutions</td>
<td>394</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Dynamic Solutions</td>
<td>396</td>
</tr>
</tbody>
</table>
4.4 PRINCIPAL PARAMETRIC RESONANCE OF THE FIRST MODE
 4.4.1 Equilibrium Solutions and Their Stability
 4.4.2 Dynamic Solutions
4.5 PRINCIPAL PARAMETRIC RESONANCE OF THE SECOND MODE
 4.5.1 Equilibrium Solutions and Their Stability
 4.5.2 Dynamic Solutions
4.6 COMBINATION PARAMETRIC RESONANCE OF THE ADDITIVE TYPE
 4.6.1 Equilibrium Solutions and Their Stability
 4.6.2 Dynamic Solutions
5 COMBINATION RESONANCES
 5.1 EXPERIMENTS
 5.1.1 Combination Parametric Resonance in a Cantilever Beam
 5.1.2 Combination External Resonances in a Portal Frame
 5.1.3 Combination Resonance of the Additive Type in a Composite Plate
 5.1.4 Subcombination Resonance in a Composite Plate
 5.1.5 Combination Internal Resonance in a Two-Beam-Mass Structure
 5.1.6 Combination Internal Resonance in a T-Shaped Structure
 5.1.7 Subcombination Internal Resonance in a Composite Plate
 5.2 COMBINATION PARAMETRIC RESONANCE
 5.2.1 Modulation Equations
 5.2.2 Fixed Points and Their Stability
 5.3 EXTERNAL SUBCOMBINATION RESONANCE
 5.3.1 Modulation Equations
 5.3.2 Fixed Points and Their Stability
 5.4 COMBINATION INTERNAL RESONANCE
 5.4.1 Modulation Equations
 5.4.2 Fixed Points and Their Stability
 5.4.3 Force-Response Curves
5.4.4 Frequency-Response Curves 471

5.5 SUBCOMBINATION INTERNAL RESONANCE IN A CANTILEVER BEAM 474
5.5.1 Modulation Equations 474
5.5.2 Fixed Points and Their Stability 476

5.6 COMBINATION INTERNAL RESONANCE IN CIRCULAR PLATES 482
5.6.1 Discretization 484
5.6.2 Modulation Equations 487
5.6.3 Fixed Points and Their Stability 489

6 SYSTEMS WITH WIDELY SPACED MODES 495

6.1 EXPERIMENTAL RESULTS 497
6.1.1 A Parametrically Excited Cantilever Beam 497
6.1.2 A Transversely Excited Cantilever Beam 503
6.1.3 Frames 503
6.1.4 Composite Plates 505
6.1.5 An Externally Excited Circular Rod 507

6.2 ANALYSIS OF AN EXTERNALLY EXCITED SYSTEM 513
6.2.1 Method of Averaging 515
6.2.2 Method of Multiple Scales 516
6.2.3 The Method of Normal Forms 518
6.2.4 Fixed Points and Their Stability 520
6.2.5 Dynamic Solutions 523

6.3 ANALYSIS OF A PARAMETRICALLY EXCITED SYSTEM 526
6.3.1 Modulation Equations 527
6.3.2 Fixed Points and Their Stability 529
6.3.3 Dynamic Solutions 531

6.4 APPLICATION TO CANTILEVER METALLIC BEAMS 542
6.4.1 Problem Formulation 543
6.4.2 Interaction Between Two Bending Modes in the y-Direction 545
6.4.3 Interaction Between Two Bending Modes in Orthogonal Directions 547
6.4.4 Interaction Between a Bending and a Torsional Mode 550
6.4.5 Interaction Among Four Bending Modes in a Circular Rod 554

7 MULTIPLE INTERNAL RESONANCES 557
7.1 MULTIPLE TWO-TO-ONE AUTOPARAMETRIC RESONANCES 561
 7.1.1 Modulation Equations 561
 7.1.2 Fixed Points and Their Stability 564
 7.1.3 Bifurcation Analysis of the Fixed-Point Solutions 567
 7.1.4 Dynamic Solutions 572
7.2 SUSPENDED HOMOGENEOUS ELASTIC CABLES 575
 7.2.1 Problem Formulation 575
 7.2.2 Modulation Equations 579
 7.2.3 Bifurcation Analysis 590

8 NONLINEAR NORMAL MODES 599
8.1 CONCEPT OF NONLINEAR NORMAL MODES 599
 8.1.1 Invariant-Manifold Approach to Nonlinear Normal Modes 603
 8.1.2 An Energy-Based Approach to Nonlinear Normal Modes 606
 8.1.3 Comments 607
8.2 A SYMMETRIC 2DOF SYSTEM 609
 8.2.1 Similar Nonlinear Normal Modes 610
 8.2.2 Periodic Solutions by the Method of Multiple Scales 614
 8.2.3 Comments 618
8.3 AN ASYMMETRIC 2DOF SYSTEM 618
 8.3.1 Similar Nonlinear Normal Modes 619
 8.3.2 Periodic Solutions by the Method of Multiple Scales 619
8.4 CUBIC AND QUINTIC NONLINEARITIES 625
 8.4.1 Symmetric Case 626
 8.4.2 Unsymmetric Case 627
8.5 QUADRATIC AND CUBIC NONLINEARITIES 629
 8.5.1 Similar Nonlinear Normal Modes 629
8.5.2 Periodic Solutions by the Method of Multiple Scales 630
8.5.3 Comments 633

8.6 MULTI-DEGREE-OF-FREEDOM SYSTEMS 633
8.6.1 Real-Variable Invariant-Manifold Approach 634
8.6.2 Complex-Variable Invariant-Manifold Approach 636
8.6.3 The Method of Multiple Scales 639

8.7 SYSTEMS WITH INTERNAL RESONANCE 641
8.7.1 Method of Solution 642
8.7.2 One-to-One Internal Resonance 646
8.7.3 Three-to-One Internal Resonance 651

8.8 CONTINUOUS SYSTEMS 653
8.8.1 Harmonic-Balance Methods 654
8.8.2 Discretization Methods 655
8.8.3 Direct Approaches 657

8.9 A BEAM ON A NONLINEAR FOUNDATION 662
8.9.1 The Method of Multiple Scales 663
8.9.2 The Method of Normal Forms 665
8.9.3 The Method of Shaw and Pierre 666
8.9.4 The Method of King and Vakakis 670

8.10 NONLINEAR BOUNDARY CONDITIONS 672
8.10.1 The Method of Multiple Scales 672
8.10.2 The Method of Normal Forms 673
8.10.3 The Method of Shaw and Pierre 675
8.10.4 The Method of King and Vakakis 677

8.11 THE CASE OF INTERNAL RESONANCE 679
8.11.1 The Method of Multiple Scales 679
8.11.2 The Method of Normal Forms 681

BIBLIOGRAPHY 685

SUBJECT INDEX 749