Preface xv

CHAPTER 1 Introduction 1
1.1 Nature of Physical Chemistry 1
1.2 Units 3
 • Force 4 • Pressure 4 • Energy 6
1.3 Atomic Mass, Molecular Mass, and the Chemical Mole 6

CHAPTER 2 The Gas Laws 9
2.1 Some Basic Definitions 9
2.2 An Operational Definition of Temperature 10
2.3 Boyle's Law 11
2.4 Charles' and Gay–Lussac's Law 11
2.5 Avogadro's Law 13
2.6 The Ideal Gas Equation 14
2.7 Dalton's Law of Partial Pressures 16
2.8 Real Gases 18
 • The van der Waals Equation 19 • The Virial Equation of State 22
2.9 Condensation of Gases and the Critical State 24
Problems 30

CHAPTER 3 Kinetic Theory of Gases 37
3.1 The Model 37
3.2 Pressure of a Gas 38
3.3 Kinetic Energy and Temperature 40
3.4 The Maxwell Distribution Laws 41
3.5 Molecular Collisions and the Mean Free Path 47
3.6 Gas Viscosity 51
3.7 Graham's Laws of Diffusion and Effusion 54
3.8 Equipartition of Energy 57
Appendix 3.1 Derivation of Equation 3.24 64
Appendix 3.2 Total and Partial Differentiation 66
Problems 69

CHAPTER 4 The First Law of Thermodynamics 75
4.1 Work and Heat 75
 • Work 75 • Heat 81
4.2 The First Law of Thermodynamics 82
4.3 Enthalpy 85
4.4 A Closer Look at Heat Capacities 90
4.5 Gas Expansion 93
 • Isothermal Expansion 93 • Adiabatic Expansion 94
CHAPTER 5 The Second Law of Thermodynamics 125

5.1 Spontaneous Process 125
5.2 Entropy 127
 • Statistical Definition of Entropy 128 • Thermodynamic Definition of
 Entropy 131
5.3 The Carnot Heat Engine 131
 • Thermodynamic Efficiency 134 • The Entropy Function 135
 • Refrigerators, Air Conditioners, and Heat Pumps 136
5.4 The Second Law of Thermodynamics 138
5.5 Entropy Changes 141
 • Entropy Change due to Mixing of Ideal Gases 141 • Entropy Change
 due to Phase Transitions 142 • Entropy Change due to Heating 144
5.6 The Third Law of Thermodynamics 148
 • Third-Law or Absolute Entropies 148 • Entropy of Chemical
 Reactions 151
5.7 Residual Entropy 153
Appendix 5.1 Statements of the Second Law of Thermodynamics 157
Problems 159

CHAPTER 6 Gibbs and Helmholtz Energies and Their Applications 165

6.1 Gibbs and Helmholtz Energies 165
6.2 Meaning of Helmholtz and Gibbs Energies 168
 • Helmholtz Energy 168 • Gibbs Energy 169
6.3 Standard Molar Gibbs Energy of Formation (\(\Delta_f \bar{G}^\circ\)) 172
6.4 Dependence of Gibbs Energy on Temperature and Pressure 175
 • Dependence of \(G\) on Temperature 175 • Dependence of \(G\) on
 Pressure 176
6.5 Gibbs Energy and Phase Equilibria 178
 • The Clapeyron and Clausius–Clapeyron Equations 180 • Phase
 Diagrams 182 • The Phase Rule 186
6.6 Thermodynamics of Rubber Elasticity 186
Appendix 6.1 Some Thermodynamic Relationships 191
Appendix 6.2 Derivation of the Phase Rule 194
Problems 197

CHAPTER 7 Nonelectrolyte Solutions 203

7.1 Concentration Units 203
 • Percent by Weight 203 • Mole Fraction \((x)\) 204 • Molarity
 \((M)\) 204 • Molality \((m)\) 204
7.2 Partial Molar Quantities 205
 • Partial Molar Volume 205 • Partial Molar Gibbs Energy 206
7.3 The Thermodynamics of Mixing 208
7.4 Binary Mixtures of Volatile Liquids 211
CHAPTER 8 Electrolyte Solutions 249

8.1 Electrical Conduction in Solution 249
- Some Basic Definitions 249 - Degree of Dissociation 255 - Ionic Mobility 256 - Applications of Conductance Measurements 258

8.2 A Molecular View of the Solution Process 259

8.3 Thermodynamics of Ions in Solution 263
- Enthalpy, Entropy, and Gibbs Energy of Formation of Ions in Solution 264

8.4 Ionic Activity 266

8.5 Debye–Hückel Theory of Electrolytes 271
- The Salting-In and Salting-Out Effects 274

8.6 Colligative Properties of Electrolyte Solutions 277
- The Donnan Effect 279

8.7 Biological Membranes 282
- Membrane Transport 284

Appendix 8.1 Notes on Electrostatics 291
Appendix 8.2 The Donnan Effect Involving Proteins Bearing Multiple Charges 294

Problems 297

CHAPTER 9 Chemical Equilibrium 301

9.1 Chemical Equilibrium in Gaseous Systems 301
- Ideal Gases 301 - Real Gases 307

9.2 Reactions in Solution 309

9.3 Heterogeneous Equilibria 310

9.4 The Influence of Temperature, Pressure, and Catalysts on the Equilibrium Constant 312
- The Effect of Temperature 313 - The Effect of Pressure 316
- The Effect of a Catalyst 317

9.5 Binding of Ligands and Metal Ions to Macromolecules 318
- One Binding Site per Macromolecule 318 - n Equivalent Binding Sites per Macromolecule 319 - Equilibrium Dialysis 322

9.6 Bioenergetics 324
- Glycolysis 330 - Some Limitations of Thermodynamics 336

Appendix 9.1 The Relationship Between Fugacity and Pressure 338
Appendix 9.2 The Relationships Between K_1 and K_2 and the Intrinsic Dissociation Constant K 341

Problems 345

CHAPTER 10 Electrochemistry 351

10.1 Electrochemical Cells 351
10.2 Single–Electrode Potential 353
10.3 Thermodynamics of Electrochemical Cells 356
 • The Nernst Equation 360 • Temperature Dependence of EMF 362
10.4 Types of Electrodes 363
 • Metal Electrodes 363 • Gas Electrodes 363 • Metal–Insoluble Salt Electrodes 363 • The Glass Electrode 364 • Ion–Selective Electrodes 364
10.5 Types of Electrochemical Cells 364
 • Concentration Cells 365 • Fuel Cells 365
10.6 Applications of EMF Measurements 366
 • Determination of Activity Coefficients 367 • Determination of pH 367
10.7 Potentiometric Titration of Redox Reactions 368
10.8 Biological Oxidation 373
 • The Chemiosmotic Theory of Oxidative Phosphorylation 378
10.9 Membrane Potential 381
 • The Goldman Equation 384 • The Action Potential 384
Problems 391

CHAPTER 11 Acids and Bases 397
11.1 Definitions of Acids and Bases 397
11.2 Dissociation of Acids and Bases 398
 • The Ion Product of Water and the pH Scale 403 • The Relationship Between the Dissociation Constant of an Acid and Its Conjugate Base 405
11.3 Salt Hydrolysis 406
11.4 Acid–Base Titrations 407
 • Acid–Base Indicators 411
11.5 Diprotic and Polyprotic Acids 412
11.6 Amino Acids 416
 • Dissociation of Amino Acids 416 • The Isoelectric Point (pI) 419
11.7 Buffer Solutions 420
 • The Effect of Ionic Strength and Temperature on Buffer Solutions 422 • Preparing a Buffer Solution With a Specific pH 424 • Buffer Capacity 425
11.8 Maintaining the pH of Blood 425
Appendix 11.1 A More Exact Treatment of Acid–Base Equilibria 431
Problems 439

CHAPTER 12 Chemical Kinetics 445
12.1 Reaction Rate 445
12.2 Reaction Order 446
 • Zero–Order Reactions 447 • First–Order Reactions 448 • Second–Order Reactions 452 • Determination of Reaction Order 458
12.3 Molecularity of a Reaction 460
 • Unimolecular Reactions 461 • Bimolecular Reactions 463
 • Termolecular Reactions 463
12.4 More Complex Reactions 464
 • Reversible Reactions 464 • Consecutive Reactions 466 • Chain Reactions 468
12.5 The Effect of Temperature on Reaction Rates 469
 • The Arrhenius Equation 470
12.6 Potential–Energy Surfaces 471
12.7 Theories of Reaction Rates 473
12.8 Isotope Effects in Chemical Reactions 480
12.9 Reactions in Solution 483
12.10 Fast Reactions in Solution 485
 • The Flow Method 487 • The Relaxation Method 488
12.11 Oscillating Reactions 491
Appendix 12.1 Derivation of Equation 12.9 494
Appendix 12.2 Derivation of Equation 12.38 496
Problems 500

CHAPTER 13 Enzyme Kinetics 511
13.1 General Principles of Catalysis 511
 • Enzyme Catalysis 512
13.2 The Equations of Enzyme Kinetics 514
 • Michaelis–Menten Kinetics 515 • Steady-State Kinetics 517 • The Significance of K_M and V_{max} 519
13.3 Chymotrypsin: A Case Study 521
13.4 Multisubstrate Systems 524
 • The Sequential Mechanism 525 • The Nonsequential or "Ping-Pong" Mechanism 526
13.5 Enzyme Inhibition 526
 • Reversible Inhibition 527 • Irreversible Inhibition 535
13.6 Allosteric Interactions 536
 • Oxygen Binding to Myoglobin and Hemoglobin 536 • The Hill Equation 538 • The Concerted Model 541 • The Sequential Model 543 • Conformational Changes in Hemoglobin Induced by Oxygen Binding 544
13.7 pH Effects on Enzyme Kinetics 545
Appendix 13.1 Kinetic Analysis of the Hydrolysis of p-Nitrophenyl Trimethylacetate Catalyzed by Chymotrypsin 549
Appendix 13.2 Derivations of Equations 13.17 and 13.19 551
Appendix 13.3 Derivation of Equation 13.32 553
Problems 556

CHAPTER 14 Quantum Mechanics and Atomic Structure 561
14.1 The Wave Theory of Light 561
14.2 Planck's Quantum Theory 564
14.3 The Photoelectric Effect 565
14.4 Bohr's Theory of the Hydrogen Emission Spectrum 567
14.5 de Broglie's Postulate 574
14.6 The Heisenberg Uncertainty Principle 578
14.7 The Schrödinger Wave Equation 581
14.8 Particle in a One-Dimensional Box 583
 • Electronic Spectra of Polyenes 588
14.9 Quantum-Mechanical Tunneling 590
14.10 The Schrödinger Wave Equation for the Hydrogen Atom 593
 • Atomic Orbitals 595
14.11 Many-Electron Atoms and the Periodic Table 600
 • Electron Configurations 601 • Variations in Periodic Properties 605
Problems 612
CHAPTER 15 The Chemical Bond 619
15.1 Lewis Structures 619
15.2 Valence Bond Theory 620
15.3 Hybridization of Atomic Orbitals 623
 • Methane (CH₄) 623 • Ethylene (C₂H₄) 626 • Acetylene (C₂H₂) 626
15.4 Electronegativity and Dipole Moment 630
 • Electronegativity 630 • Dipole Moment 630
15.5 Molecular Orbital Theory 633
15.6 Diatomic Molecules 636
 • Homonuclear Diatomic Molecules of the Second-Period Elements 636
 • Heteronuclear Diatomic Molecules of the First- and Second-Period Elements 638
15.7 Resonance and Electron Delocalization 641
 • The Peptide Bond 644
15.8 Coordination Compounds 645
 • Crystal Field Theory 647 • Molecular Orbital Theory 652
 • Valence Bond Theory 654
15.9 Coordination Compounds in Biological Systems 655
Problems 664

CHAPTER 16 Intermolecular Forces 669
16.1 Intermolecular Interactions 669
16.2 The Ionic Bond 670
16.3 Types of Intermolecular Forces 672
 • Dipole–Dipole Interaction 672 • Ion–Dipole Interaction 674
 • Ion–Induced Dipole and Dipole–Induced Dipole Interactions 675
 • Dispersion, or London, Interactions 678 • Repulsive and Total Interactions 679
 • The Role of Dispersion Forces in Sickle-Cell Anemia 681
16.4 The Hydrogen Bond 682
16.5 The Structure and Properties of Water 689
 • The Structure of Ice 689 • The Structure of Water 689
 • Some Physiochemical Properties of Water 691
16.6 Hydrophobic Interaction 693
Problems 698

CHAPTER 17 Spectroscopy 701
17.1 Vocabulary 701
 • Absorption and Emission 701 • Units 701 • Regions of the Spectrum 702
 • Line Width 703 • Resolution 705
 • Intensity 706 • Selection Rules 708 • Signal–to–Noise Ratio 709 • The Beer–Lambert Law 710
17.2 Microwave Spectroscopy 711
17.3 Infrared Spectroscopy 717
 • Simultaneous Vibrational and Rotational Transitions 722
17.4 Electronic Spectroscopy 724
 • Organic Molecules 726 • Transition Metal Complexes 729
 • Molecules that Undergo Charge-Transfer Interactions 729
 • Application of the Beer–Lambert Law 729
17.5 Nuclear Magnetic Resonance Spectroscopy 731
CHAPTER 18 Molecular Symmetry and Optical Activity 769
18.1 Symmetry of Molecules 769
• Proper Rotation Axis 769 • Plane of Symmetry 770 • Center of Symmetry 770 • Improper Rotation Axis 770 • Molecular Symmetry and Dipole Moment 770 • Molecular Symmetry and Optical Activity 771
18.2 Polarized Light and Optical Rotation 772
18.3 Optical Rotatory Dispersion and Circular Dichroism 777
Problems 781

CHAPTER 19 Photochemistry and Photobiology 783
19.1 Introduction 783
• Thermal Versus Photochemical Reactions 783 • Primary Versus Secondary Processes 784 • Quantum Yields 784 • Measurement of Light Intensity 786 • Action Spectrum 787
19.2 Earth’s Atmosphere 788
• Composition of the Atmosphere 788 • Regions of the Atmosphere 789 • Residence Time 792
19.3 The Greenhouse Effect 793
19.4 Photochemical Smog 796
• Formation of Nitrogen Oxides 796 • Formation of O3 797 • Formation of Hydroxyl Radical 798 • Formation of Other Secondary Pollutants 798 • Harmful Effects and Prevention of Photochemical Smog 799
19.5 The Essential Role of Ozone in the Stratosphere 800
• Formation of the Ozone Layer 800 • Destruction of Ozone 801 • Polar Ozone Holes 803 • Ways to Curb Ozone Depletion 804
19.6 Photosynthesis 805
• The Chloroplast 806 • Chlorophyll and Other Pigment Molecules 807 • The Reaction Center 808 • Photosystems I and II 809 • Dark Reactions 812
19.7 Vision 813
• Structure of Rhodopsin 814 • Mechanism of Vision 815 • Rotation About the C=C Bond 816
19.8 Biological Effects of Radiation 817
• Sunlight and Skin Cancer 817 • Photomedicine 819 • Light–Activated Drugs 820
Problems 825
23.6 Chemical Equilibrium 962
23.7 Transition-State Theory 968
Appendix 23.1 Justification of $Q = q^N/N!$ for Indistinguishable Molecules 973
Problems 975

Appendix A Review of Mathematics and Physics 977
Appendix B Thermodynamic Data 986
Glossary 991
Answers to Even-Numbered Computational Problems 1005
Index 1009