CONTENTS

List of Symbols xvii
Preface xix

Chapter 1 Basic Simulation Modeling 1
1.1 The Nature of Simulation 1
1.2 Systems, Models, and Simulation 3
1.3 Discrete-Event Simulation 6
 1.3.1 Time-Advance Mechanisms 7
 1.3.2 Components and Organization of a Discrete-Event Simulation Model 9
1.4 Simulation of a Single-Server Queueing System 12
 1.4.1 Problem Statement 12
 1.4.2 Intuitive Explanation 18
 1.4.3 Program Organization and Logic 27
 1.4.4 FORTRAN Program 32
 1.4.5 C Program 41
 1.4.6 Simulation Output and Discussion 49
 1.4.7 Alternative Stopping Rules 51
 1.4.8 Determining the Events and Variables 57
1.5 Simulation of an Inventory System 60
 1.5.1 Problem Statement 60
 1.5.2 Program Organization and Logic 62
 1.5.3 FORTRAN Program 66
 1.5.4 C Program 73
 1.5.5 Simulation Output and Discussion 78
1.6 Alternative Approaches to Modeling and Coding Simulations 80
 1.6.1 Parallel and Distributed Simulation 80
 1.6.2 Simulation across the Internet and Web-Based Simulation 83
1.7 Steps in a Sound Simulation Study 83
1.8 Other Types of Simulation 87
 1.8.1 Continuous Simulation 87
Chapter 2 Modeling Complex Systems

2.1 Introduction 106

2.2 List Processing in Simulation 107

2.2.1 Approaches to Storing Lists in a Computer 107

2.2.2 Linked Storage Allocation 108

2.3 A Simple Simulation Language: simlib 114

2.4 Single-Server Queueing Simulation with simlib 123

2.4.1 Problem Statement 123

2.4.2 simlib Program 123

2.4.3 Simulation Output and Discussion 128

2.5 Time-Shared Computer Model 129

2.5.1 Problem Statement 129

2.5.2 simlib Program 130

2.5.3 Simulation Output and Discussion 138

2.6 Multiteller Bank with Jockeying 141

2.6.1 Problem Statement 141

2.6.2 simlib Program 142

2.6.3 Simulation Output and Discussion 152

2.7 Job-Shop Model 155

2.7.1 Problem Statement 155

2.7.2 simlib Program 157

2.7.3 Simulation Output and Discussion 168

2.8 Efficient Event-List Manipulation 170

Appendix 2A: C Code for simlib 171

Problems 184

Chapter 3 Simulation Software

3.1 Introduction 202

3.2 Comparison of Simulation Packages with Programming Languages 203

3.3 Classification of Simulation Software 204

3.3.1 General-Purpose Versus Application-Oriented Simulation Packages 204
Chapter 4: Review of Basic Probability and Statistics

4.1 Introduction
4.2 Random Variables and Their Properties
4.3 Simulation Output Data and Stochastic Processes
4.4 Estimation of Means, Variances, and Correlations
4.5 Confidence Intervals and Hypothesis Tests for the Mean
4.6 The Strong Law of Large Numbers
4.7 The Danger of Replacing a Probability Distribution by its Mean

 Appendix 4A: Comments on Covariance-Stationary Processes

Chapter 5: Building Valid, Credible, and Appropriately Detailed Simulation Models

5.1 Introduction and Definitions
5.2 Guidelines for Determining the Level of Model Detail
5.3 Verification of Simulation Computer Programs
5.4 Techniques for Increasing Model Validity and Credibility

 5.4.1 Collect High-Quality Information and Data on the System
 5.4.2 Interact with the Manager on a Regular Basis
 5.4.3 Maintain an Assumptions Document and Perform a Structured Walk-Through
 5.4.4 Validate Components of the Model by Using Quantitative Techniques
5.4.5 Validate the Output from the Overall Simulation Model 279
5.4.6 Animation 282
5.5 Management’s Role in the Simulation Process 282
5.6 Statistical Procedures for Comparing Real-World Observations and Simulation Output Data 283
5.6.1 Inspection Approach 283
5.6.2 Confidence-Interval Approach Based on Independent Data 287
5.6.3 Time-Series Approaches 289

Problems 290

Chapter 6 Selecting Input Probability Distributions 292
6.1 Introduction 292
6.2 Useful Probability Distributions 298
6.2.1 Parameterization of Continuous Distributions 298
6.2.2 Continuous Distributions 299
6.2.3 Discrete Distributions 318
6.2.4 Empirical Distributions 318
6.3 Techniques for Assessing Sample Independence 329
6.4 Activity I: Hypothesizing Families of Distributions 332
6.4.1 Summary Statistics 333
6.4.2 Histograms 335
6.4.3 Quantile Summaries and Box Plots 337
6.5 Activity II: Estimation of Parameters 343
6.6 Activity III: Determining How Representative the Fitted Distributions Are 347
6.6.1 Heuristic Procedures 347
6.6.2 Goodness-of-Fit Tests 356
6.7 The ExpertFit Software and an Extended Example 370
6.8 Shifted and Truncated Distributions 376
6.9 Bézier Distributions 378
6.10 Specifying Multivariate Distributions, Correlations, and Stochastic Processes 378
6.10.1 Specifying Multivariate Distributions 380
6.10.2 Specifying Arbitrary Marginal Distributions and Correlations 383
6.10.3 Specifying Stochastic Processes 384
6.11 Selecting a Distribution in the Absence of Data 386
6.12 Models of Arrival Processes 389
6.12.1 Poisson Processes 389
6.12.2 Nonstationary Poisson Processes 390
6.12.3 Batch Arrivals 393
6.13 Assessing the Homogeneity of Different Data Sets 394
Appendix 6A: Tables of MLEs for the Gamma and Beta Distributions 395

Problems 397

Chapter 7 Random-Number Generators 402

7.1 Introduction 402

7.2 Linear Congruential Generators 406

7.2.1 Mixed Generators 409

7.2.2 Multiplicative Generators 410

7.3 Other Kinds of Generators 412

7.3.1 More General Congruences 413

7.3.2 Composite Generators 414

7.3.3 Tausworthe and Related Generators 416

7.4 Testing Random-Number Generators 417

7.4.1 Empirical Tests 418

7.4.2 Theoretical Tests 423

7.4.3 Some General Observations on Testing 426

Appendix 7A: Portable Computer Codes for a PMMLCG 427

7A.1 FORTRAN 428

7A.2 C 430

7A.3 Obtaining Initial Seeds for the Streams 431

Appendix 7B: Portable C Code for a Combined MRG 432

Problems 435

Chapter 8 Generating Random Variates 437

8.1 Introduction 437

8.2 General Approaches to Generating Random Variates 439

8.2.1 Inverse Transform 440

8.2.2 Composition 448

8.2.3 Convolution 451

8.2.4 Acceptance-Rejection 452

8.2.5 Special Properties 459

8.3 Generating Continuous Random Variates 459

8.3.1 Uniform 460

8.3.2 Exponential 460

8.3.3 m-Erlang 461

8.3.4 Gamma 461

8.3.5 Weibull 464

8.3.6 Normal 465

8.3.7 Lognormal 466

8.3.8 Beta 467

8.3.9 Pearson Type V 468

8.3.10 Pearson Type VI 468

8.3.11 Log-Logistic 468
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.12</td>
<td>Johnson Bounded</td>
<td>468</td>
</tr>
<tr>
<td>8.3.13</td>
<td>Johnson Unbounded</td>
<td>469</td>
</tr>
<tr>
<td>8.3.14</td>
<td>Bézier</td>
<td>469</td>
</tr>
<tr>
<td>8.3.15</td>
<td>Triangular</td>
<td>469</td>
</tr>
<tr>
<td>8.3.16</td>
<td>Empirical Distributions</td>
<td>470</td>
</tr>
<tr>
<td>8.4</td>
<td>Generating Discrete Random Variates</td>
<td>471</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Bernoulli</td>
<td>472</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Discrete Uniform</td>
<td>472</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Arbitrary Discrete Distribution</td>
<td>472</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Binomial</td>
<td>477</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Geometric</td>
<td>477</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Negative Binomial</td>
<td>477</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Poisson</td>
<td>478</td>
</tr>
<tr>
<td>8.5</td>
<td>Generating Random Vectors, Correlated Random Variates, and Stochastic Processes</td>
<td>478</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Using Conditional Distributions</td>
<td>479</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Multivariate Normal and Multivariate Lognormal</td>
<td>480</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Correlated Gamma Random Variates</td>
<td>481</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Generating from Multivariate Families</td>
<td>482</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Generating Random Vectors with Arbitrarily Specified Marginal Distributions and Correlations</td>
<td>482</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Generating Stochastic Processes</td>
<td>483</td>
</tr>
<tr>
<td>8.6</td>
<td>Generating Arrival Processes</td>
<td>484</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Poisson Processes</td>
<td>485</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Nonstationary Poisson Processes</td>
<td>485</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Batch Arrivals</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Appendix 8A: Validity of the Acceptance-Rejection Method</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Appendix 8B: Setup for the Alias Method</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>491</td>
</tr>
<tr>
<td>9</td>
<td>Output Data Analysis for a Single System</td>
<td>496</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>496</td>
</tr>
<tr>
<td>9.2</td>
<td>Transient and Steady-State Behavior of a Stochastic Process</td>
<td>499</td>
</tr>
<tr>
<td>9.3</td>
<td>Types of Simulations with Regard to Output Analysis</td>
<td>502</td>
</tr>
<tr>
<td>9.4</td>
<td>Statistical Analysis for Terminating Simulations</td>
<td>505</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Estimating Means</td>
<td>506</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Estimating Other Measures of Performance</td>
<td>515</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Choosing Initial Conditions</td>
<td>518</td>
</tr>
<tr>
<td>9.5</td>
<td>Statistical Analysis for Steady-State Parameters</td>
<td>518</td>
</tr>
<tr>
<td>9.5.1</td>
<td>The Problem of the Initial Transient</td>
<td>519</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Replication/Deletion Approaches for Means</td>
<td>525</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Other Approaches for Means</td>
<td>527</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Estimating Other Measures of Performance</td>
<td>537</td>
</tr>
</tbody>
</table>
Contents XV

9.6 Statistical Analysis for Steady-State Cycle Parameters 539
9.7 Multiple Measures of Performance 542
9.8 Time Plots of Important Variables 545

Appendix 9A: Ratios of Expectations and Jackknife Estimators 545

Problems 547

Chapter 10 Comparing Alternative System Configurations 553

10.1 Introduction 553
10.2 Confidence Intervals for the Difference Between the Expected Responses of Two Systems 557
10.2.1 A Paired-\(t \) Confidence Interval 557
10.2.2 A Modified Two-Sample-\(t \) Confidence Interval 559
10.2.3 Contrasting the Two Methods 560
10.2.4 Comparisons Based on Steady-State Measures of Performance 560
10.3 Confidence Intervals for Comparing More than Two Systems 562
10.3.1 Comparisons with a Standard 563
10.3.2 All Pairwise Comparisons 564
10.3.3 Multiple Comparisons with the Best 566
10.4 Ranking and Selection 566
10.4.1 Selecting the Best of \(k \) Systems 567
10.4.2 Selecting a Subset of Size \(m \) Containing the Best of \(k \) Systems 569
10.4.3 Selecting the \(m \) Best of \(k \) Systems 570
10.4.4 Additional Problems and Methods 572

Appendix 10A: Validity of the Selection Procedures 575
Appendix 10B: Constants for the Selection Procedures 576

Problems 579

Chapter 11 Variance-Reduction Techniques 581

11.1 Introduction 581
11.2 Common Random Numbers 582
11.2.1 Rationale 583
11.2.2 Applicability 584
11.2.3 Synchronization 586
11.2.4 Some Examples 590
11.3 Antithetic Variates 598
11.4 Control Variates 604
11.5 Indirect Estimation 611
11.6 Conditioning 613

Problems 617
Chapter 12 Experimental Design, Sensitivity Analysis, and Optimization

12.1 Introduction 622
12.2 2^k Factorial Designs 625
12.3 Coping with Many Factors 637
 12.3.1 2^{k-p} Fractional Factorial Designs 638
 12.3.2 Factor-Screening Strategies 644
12.4 Response Surfaces and Metamodels 646
12.5 Sensitivity and Gradient Estimation 655
12.6 Optimum Seeking
 12.6.1 Optimum-Seeking Methods 659
 12.6.2 Optimum-Seeking Packages Interfaced with Simulation Software 662

Problems 666

Chapter 13 Simulation of Manufacturing Systems 669

13.1 Introduction 669
13.2 Objectives of Simulation in Manufacturing 670
13.3 Simulation Software for Manufacturing Applications 672
13.4 Modeling System Randomness 675
 13.4.1 Sources of Randomness 675
 13.4.2 Machine Downtimes 678
13.5 An Extended Example
 13.5.1 Problem Description and Simulation Results 684
 13.5.2 Statistical Calculations 693
13.6 A Simulation Case Study of a Metal-Parts Manufacturing Facility
 13.6.1 Description of the System 695
 13.6.2 Overall Objectives and Issues to Be Investigated 696
 13.6.3 Development of the Model 696
 13.6.4 Model Verification and Validation 697
 13.6.5 Results of the Simulation Experiments 699
 13.6.6 Conclusions and Benefits 701

Problems 702

Appendix 707
References 711
Subject Index 745