An Introduction to Microelectromechanical Systems Engineering

Nadim Maluf

Artech House
Boston • London
Contents

Foreword
Preface

1 MEMS: A Technology from Lilliput

The promise of technology
What are MEMS—or MST?
What is micromachining?
Applications and markets
To MEMS or not to MEMS?
Standards
The psychological barrier
Journals, conferences, and Web sites
 List of journals and magazines
 List of conferences and meetings
Summary
References
2 The Sandbox: Materials for MEMS

Silicon material system
 Silicon
 Silicon oxide and nitride
 Thin metal films
 Polymers

Other materials and substrates
 Glass and quartz substrates
 Silicon carbide and diamond
 Gallium arsenide and other group III-V compound semiconductors
 Shape-memory alloys

Important material properties and physical effects
 Piezoresistivity
 Piezoelectricity
 Thermoelectricity

Summary

References

3 The Toolbox: Processes for Micromachining

Basic process tools
 Epitaxy
 Oxidation
 Sputter deposition
 Evaporation
 Chemical vapor deposition
 Spin-on methods
 Lithography
 Etching
Contents

Advanced process tools 70
 Anodic bonding 70
 Silicon-fusion bonding 71
 Grinding, polishing, and chemomechanical polishing (CMP) 72
 Sol-gel deposition methods 74
 Electroplating and molding 75
Combining the tools—examples of commercial processes 75
 Polysilicon surface micromachining 77
 Combining silicon fusion bonding with reactive ion etching (SFB-DRIE) 79
 SCREAM 81
Summary 82
References 83

4 The Gearbox: Commercial MEM Structures and Systems 87

General design methodology 88
Techniques for sensing and actuation 90
 Common sensing methods 90
 Common actuation methods 91
Passive MEM structures 95
 Fluid nozzles 95
 Inkjet print nozzles 97
Sensors 99
 Pressure sensors 99
 High-temperature pressure sensors 104
 Mass flow sensors 105
 Acceleration sensors 108
 Angular rate sensors and gyroscopes 119
 Radiation sensors—infrared imager 134
The New Gearbox: A Peek Into the Future

5

Passive micromechanical structures

Hinge mechanisms

Sensors and analysis systems

Miniature biochemical reaction chambers

Electrophoresis on a chip

Microelectrode arrays

Actuators and actuated systems

Micromechanical resonators

High-frequency filters

"Grating light valve" display

Optical switches

Micropumps

Thermomechanical data storage

RF switch over gallium arsenide

Summary

References

The Box: Packaging for MEMS

6

Key design and packaging considerations

Wafer or wafer-stack thickness

Wafer dicing concerns
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal management</td>
<td>205</td>
</tr>
<tr>
<td>Stress isolation</td>
<td>207</td>
</tr>
<tr>
<td>Protective coatings and media isolation</td>
<td>208</td>
</tr>
<tr>
<td>Hermetic packaging</td>
<td>210</td>
</tr>
<tr>
<td>Calibration and compensation</td>
<td>211</td>
</tr>
<tr>
<td>Die-attach processes</td>
<td>212</td>
</tr>
<tr>
<td>Wiring and interconnects</td>
<td>216</td>
</tr>
<tr>
<td>Electrical interconnects</td>
<td>216</td>
</tr>
<tr>
<td>Microfluidic interconnects</td>
<td>220</td>
</tr>
<tr>
<td>Types of packaging solutions</td>
<td>222</td>
</tr>
<tr>
<td>Ceramic packaging</td>
<td>223</td>
</tr>
<tr>
<td>Metal packaging</td>
<td>228</td>
</tr>
<tr>
<td>Molded plastic packaging</td>
<td>230</td>
</tr>
<tr>
<td>Summary</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td>235</td>
</tr>
<tr>
<td>Glossary</td>
<td>239</td>
</tr>
<tr>
<td>About the Author</td>
<td>251</td>
</tr>
<tr>
<td>Index</td>
<td>253</td>
</tr>
</tbody>
</table>