FUNDAMENTALS OF FUZZY SETS

edited by

Didier Dubois

and

Henri Prade

IRIT, CNRS & University of Toulouse III

Foreword by Lotfi A. Zadeh

Kluwer Academic Publishers
Boston//London/Dordrecht
Contents

Foreword by Lotfi A. Zadeh

Preface

Series Foreword

Contributing Authors

General Introduction

Didier Dubois, Henri Prade

I Fuzzy Sets: From Basic Concepts to Applications 4
II The Role of Fuzzy Sets in Information Engineering 9
III Conclusion: The Legitimacy of Fuzzy Sets 13

References 16

PART I FUZZY SETS

1 Fuzzy Sets: History and Basic Notions

Didier Dubois, W. Ostasiewicz and Henri Prade

1.1 Introduction 21
1.2 The Historical Emergence of Fuzzy Sets 24
 1.2.1 Fuzzy-ism 25
 1.2.2 Philosophical Background 26
 1.2.3 From Logic to Fuzzy Logics 31
 1.2.4 From Sets to Fuzzy Sets 36
1.3 Basic Notions of Fuzzy Set Theory 42
 1.3.1 Representations of a Fuzzy Set 42
 1.3.2 Scalar Characteristics of a Fuzzy Set 47
 1.3.3 Extension Principles 50
 1.3.4 Basic Connectives 53
 1.3.5 Set-Theoretic Comparisons Between Fuzzy Sets 58
 1.3.6 Fuzzy Sets on Structured Referentials 66
1.4 Notions Derived from Fuzzy Sets 70
 1.4.1 Fuzzy Relations 70
2.11 Weighted Unions and Intersections 179
2.12 Prioritized Fuzzy Operations 181
2.13 Other Aggregation Operators on Fuzzy Sets 184
2.13.1 Symmetric Sums 184
2.13.2 Weak t-Norms 185
2.13.3 Compensatory Operators 186

References 187

3 Measurement of Membership Functions: Theoretical and Empirical Work 195
Taner Bilgic and I.Burhan Türksen

3.1 Introduction and Preview 195
3.2 Interpretations of Grade of Membership 197
3.2.1 The Likelihood View 198
3.2.2 Random Set View 200
3.2.3 Similarity View 201
3.2.4 View from Utility Theory 202
3.2.5 View from Measurement Theory 203

3.3 Elicitation Methods 211
3.3.1 Polling 211
3.3.2 Direct Rating 212
3.3.3 Reverse Rating 213
3.3.4 Interval Estimation 213
3.3.5 Membership Exemplification 214
3.3.6 Pairwise Comparison 214
3.3.7 Fuzzy Clustering Methods 215
3.3.8 Neural-Fuzzy Techniques 216
3.3.9 General Remarks 216

3.4 Summary 218

References 220

Appendix: Ordered Algebraic Structures and their Representations 228

PART II FUZZY RELATIONS

4 An Introduction to Fuzzy Relations 233
Sergei Ovchinnikov

4.1 Introduction 233
4.2 Basic Concepts 235
4.3 Coverings and Proximity Relations 238
4.4 Similarity Relations and Fuzzy Partitions 241
4.5 Fuzzy Orderings 246
4.6 Representation Theorems 254

References 258
PART III UNCERTAINTY

7
Possibility Theory, Probability and Fuzzy Sets:
Misunderstandings, Bridges and Gaps
Didier Dubois, Hung T. Nguyen and Henri Prade

7.1 Introduction 343

7.2 Some Misunderstandings Between Fuzzy Sets and Probability 346
7.2.1 Membership Function and Probability Measure 346
7.2.2 Fuzzy Relative Cardinality and Conditional Probability 349
7.2.3 Fuzzy Sets Can Be Cast in Random Set Theory 350
7.2.4. Membership Functions as Likelihood Functions 351

7.3 Possibility Theory 353
7.3.1 The Meaning of Possibility 354
7.3.2 Possibility Distributions 356
7.3.3 Information Content of a Possibility Distribution 358
7.3.4 Possibility and Necessity of Events 360
7.3.5 Joint Possibility, Separability and Non-Interactive Variables 364
7.3.6 Certainty and Possibility Qualification and the Extension Problem 367
7.3.7 Conditional Possibility and Possibilistic Independence 368
7.3.8 Combination Rules in Possibility Theory 376

7.4 Quantitative Possibility Theory as a Bridge Between Probability and Fuzzy Sets 378
7.4.1 Possibility Theory and Bayesian Statistics 378
7.4.2 Upper and Lower Probabilities 380
7.4.3 Possibility Distributions as Special Cases of Random Sets and Belief Functions 381
7.4.4 Possibility-Probability Transformations 383
7.4.5 Possibility Theory and the Calculus of Likelihoods 389
7.4.6 Probabilistic Interpretations of Fuzzy Set Operations 390
7.4.7 Possibility Degrees as Infinitesimal Probabilities 391

7.5 Towards Operational Semantics of Possibility Distributions and Fuzzy Sets 393
7.5.1 Frequentist Possibility 393
7.5.2 Uncertainty Measures and Scoring Rules 394
7.5.3 Betting Possibilities 395
7.5.4 Possibility as Similarity 396
7.5.5 Possibility as Preference and Graded Feasibility 397
7.5.6 Refinements of Qualitative Possibility Theory 401

7.6 Possibility and Necessity of Fuzzy Events: A Tool for Decision Under Uncertainty 402
7.6.1 Possibility and Necessity of Fuzzy Events 402
7.6.2 Sugeno Integrals 405
7.6.3 Quantitative Possibility and Choquet Integrals 406
7.6.4 Decision-Theoretic Foundations of Possibility Theory 408

7.7 Conclusion 413

Mathematical Appendix 414

References 423
8
Measures of Uncertainty and Information
George J. Klir

8.1 Introduction

8.2 Measures of Nonspecificity
8.2.1 Classical Set Theory
8.2.2 Fuzzy Set Theory
8.2.3 Possibility Theory
8.2.4 Evidence Theory

8.3 Entropy-Like Measures
8.3.1 Probability Theory
8.3.2 Evidence Theory
8.3.3 Possibility Theory

8.4 Measures of Fuzziness
8.4.1 Fuzzy Set Theory
8.4.2 Fuzzified Evidence Theory

8.5 Conclusions

References

9
Quantifying Different Facets of Fuzzy Uncertainty
Nikhil R. Pal and James C. Bezdek

9.1 Introduction

9.2 Different Facets of Fuzzy Uncertainty

9.3 Measuring Fuzziness
9.3.1 Postulates of Measures of Fuzziness
9.3.2 Various Measures of Fuzziness

9.4 Generalized Measure of Fuzziness
9.4.1 Higher Order Measures of Fuzziness
9.4.2 Weighted Fuzziness

9.5 Measuring Non-Specificity

9.6 Conclusions

References

PART IV FUZZY SETS ON THE REAL LINE

10
Fuzzy Interval Analysis
Didier Dubois, Etienne Kerre, Radko Mesiar and Henri Prade

10.1 Introduction

10.2 Fuzzy Quantities and Intervals
10.2.1 Definitions
10.2.2 Characteristics of a Fuzzy Interval
10.2.3 Noninteractive Fuzzy Variables

10.3 Basic Principles of Fuzzy Interval Analysis
10.3.1 The Extension Principle
10.3.2 Functions on Non-Interactive Fuzzy Variables: Basic Results 501
10.3.3 Application to Usual Operations 505
10.3.4 Proper and Improper Representations of Functions 509

10.4 Practical Computing with Non-Interactive Fuzzy Intervals 511
10.4.1 Parameterized Representations of a Fuzzy Interval 511
10.4.2 Exact Calculation of the Four Arithmetic Operations 514
10.4.3 Approximate Parametric Calculation of Functions of Fuzzy Intervals 516
10.4.4 Approximate Calculation of Functions of Fuzzy Intervals Using Level-Cuts 519

10.5 Alternative Fuzzy Interval Calculi 521
10.5.1 Fuzzy Interval Calculations with Linked Variables 521
10.5.2 Additions of Fuzzy Intervals in the Sense of a Triangular Norm 524
10.5.3 Multidimensional Fuzzy Quantities 530
10.5.4 Fuzzy Equations and the Optimistic Calculus of Fuzzy Intervals 534

10.6 Comparison of Fuzzy Quantities 539
10.6.1 Positioning a Number with Respect to a Fuzzy Quantity 540
10.6.2 Ranking Fuzzy Intervals via Defuzzification 541
10.6.3 Goal-Driven Ranking Methods 542
10.6.4 Fuzzy Ordering Relations Induced by Fuzzy Intervals 544
10.6.5 Fuzzy Dominance Indices and Linguistic Methods 553
10.6.6 Criteria for Ranking Fuzzy Intervals 554

10.7 Conclusion: Applications of Fuzzy Numbers and Intervals 558

References 561

11 Metric Topology of Fuzzy Numbers and Fuzzy Analysis 583

Phil Diamond and Peter Kloeden

11.1 Introduction 583

11.2 Calculus of Compact Convex Subsets in \mathbb{R}^n 585
11.2.1 Subsets and Algebraic Operations 585
11.2.2 The Hausdorff Metric 586
11.2.3 Compact Subsets of \mathbb{R}^n 587
11.2.4 Support Functions 588
11.2.5 L^p-Metrics 590
11.2.6 Continuity and Measurability 592
11.2.7 Differentiation 594
11.2.8 Integration 596
11.2.9 Bibliographical Notes 599

11.3 The Space \mathcal{E}_n 600
11.3.1 Definitions and Basic Properties 600
11.3.2 Useful Subsets of \mathcal{D}_n and \mathcal{E}_n 603
11.3.3 Bibliographical Notes 604

11.4 Metrics on \mathcal{E}_n 605
11.4.1 Definitions and Basic Properties 605
11.4.2 Completeness 607
11.4.3 Separability 608
11.4.4 Convergence Relationships 608
11.4.5 Bibliographical Notes 609

11.5 Compactness Criteria 609
11.5.1 Introduction 609
11.5.2 Compact Subsets in (\mathbb{C}^n, d_p) 611
11.5.3 Bibliographical Notes 613

11.6 Fuzzy Set Valued Mappings of Real Variables 613
11.6.1 Continuity and Measurability 613
11.6.2 Differentiation 615
11.6.3 Integration 621
11.6.4 Bibliographical Notes 624

11.7 Interpolation and Approximation 625
11.7.1 Interpolation and Splines 625
11.7.2 Bernstein Approximation 628
11.7.3 Bibliographical Notes 629

11.8 Fuzzy Differential Equations 630
11.8.1 Introduction 630
11.8.2 Existence and Uniqueness of Solutions 632
11.8.3 Reinterpreting Fuzzy DEs 632
11.8.4 Bibliographical Notes 637

11.9 Conclusion 637

References 637

Index 643