Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces

M. Bachir Bekka
Université de Metz

Matthias Mayer
KPMG, Munich
Contents

Preface vii

I. Ergodic Systems 1

§1 Examples and Basic Results 1
§2 Ergodic Theory and Unitary Representations 13
§3 Invariant Measures and Unique Ergodicity 30

II. The Geodesic Flow of Riemannian Locally Symmetric Spaces 36

§1 Some Hyperbolic Geometry 38
§2 Lattices and Fundamental Domains 42
§3 The Geodesic Flow of Compact Riemann Surfaces 57
§4 The Geodesic Flow on Riemannian Locally Symmetric Spaces 62

III. The Vanishing Theorem of Howe and Moore 80

§1 Howe–Moore’s Theorem 81
§2 Moore’s Ergodicity Theorems 89
§3 Counting Lattice Points in the Hyperbolic Plane 93
§4 Mixing of All Orders 98

IV. The Horocycle Flow 110

§1 The Horocycle Flow of a Riemann Surface 111
§2 Proof of Hedlund’s Theorem – Cocompact Case 116
§3 Classification of Invariant Measures 120
§4 Equidistribution of Horocycle Orbits 128

V. Siegel Sets, Mahler’s Criterion and Margulis’ Lemma 139

§1 Siegel Sets in SL(n, R) 139
§2 SL(n, Z) is a lattice in SL(n, R) 144
§3 Mahler’s Criterion 146
§4 Reduction of Positive Definite Quadratic Forms 148
§5 Margulis’ Lemma 150

VI. An Application to Number Theory: Oppenheim’s Conjecture 161

§1 Oppenheim’s Conjecture 162
§2 Proof of the Theorem – Preliminaries 163
§3 Existence of Minimal Closed Subsets 172
§4 Orbits of One-Parameter Groups of Unipotent Linear Transformations 177
§5 Proof of the Theorem – Conclusion 179
§6 Ratner’s Results on the Conjectures of Raghunathan, Dani and Margulis 184

Bibliography 189

Index 198