MICROSCOPIC X-RAY FLUORESCENCE ANALYSIS

Edited by
Koen H.A. Janssens, Freddy C.V. Adams
Department of Chemistry, University of Antwerp, Belgium

Anders Rindby
Department of Physics, Chalmers University of Technology, Göteborg, Sweden

JOHN WILEY & SONS, LTD
Chichester · New York · Weinheim · Brisbane · Toronto · Singapore
CONTENTS

CONTRIBUTORS xi

PREFACE xiii

1 **OVERVIEW**
K. Janssens, F. Adams and A. Rindby

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Laboratory (\mu)-XRF</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Synchrotron (\mu)-XRF</td>
<td>6</td>
</tr>
</tbody>
</table>

References 10

2 **INTERACTION OF X-RAYS WITH MATTER**
J.E Fernández

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Relevant aspects of photon interactions with matter</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Single-process kernels</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1 Representation of polarized radiation with Stokes parameters</td>
<td>21</td>
</tr>
<tr>
<td>2.3.2 Photoelectric effect</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3 Rayleigh scattering</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4 Compton scattering</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Mathematical description of photon diffusion</td>
<td>38</td>
</tr>
<tr>
<td>2.4.1 Scalar transport equation</td>
<td>39</td>
</tr>
<tr>
<td>2.4.2 Vector transport equation</td>
<td>41</td>
</tr>
<tr>
<td>2.4.3 Differences and similarities between the scalar and vector models</td>
<td>44</td>
</tr>
<tr>
<td>2.5 Interpretation of X-ray fluorescence spectra</td>
<td>48</td>
</tr>
<tr>
<td>2.5.1 Advantages and limitations of the transport model for describing X-ray diffusion</td>
<td>49</td>
</tr>
<tr>
<td>2.5.2 Example</td>
<td>56</td>
</tr>
</tbody>
</table>

References 59

3 **MICROFOCUSED X-RAY OPTICS**
A. Rindby, F. Adams and P. Engström

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Basic imaging and non-imaging optics</td>
<td>64</td>
</tr>
</tbody>
</table>
CONTENTS

3.2.1 Collimators and focusing systems 64
3.2.2 Early focusing systems 65
3.2.3 Kirkpatrick–Baez optics 66
3.2.4 Modern focusing systems 66
3.2.5 Imaging versus non-imaging systems 66

3.3 X-ray optics, aberration and astigmatism 68
3.3.1 Optical theory of X-rays 68
3.3.2 Fresnel formula 70
3.3.3 Total reflection 72
3.3.4 Geometrical aberrations 73
3.3.5 Flux, brightness and brilliance 74

3.4 Mirror optics 74
3.4.1 Multilayer optics 74
3.4.2 Grazing incidence mirrors 75
3.4.3 Compound systems 76

3.5 Capillary optics 77
3.5.1 Historical background 77
3.5.2 Monocapillary shapes and dimensions 78
3.5.3 Propagation of X-rays inside a capillary 79
3.5.4 Ray-tracing – experimental results 83
3.5.5 Capillary optics in practice 85
3.5.6 Polycapillary (Kumakhov) lenses 87

3.6 Refractive optics 87

3.7 Fresnel and Bragg–Fresnel optics 89
3.7.1 Fresnel zoneplates 90
3.7.2 Bragg–Fresnel optics 92

3.8 Conclusions 93

References 93

4 INSTRUMENTATION FOR μ-XRF WITH LABORATORY SOURCES 95
A. Rindby 95
4.1 Historical perspective 95
4.2 Basic components 96
4.2.1 X-ray tube intensity and brilliance 96
4.2.2 Focusing devices 99
4.2.3 Sample positioning and monitoring 101
4.2.4 Detection system and signal processing 103

4.3 Scanning procedure 104
4.4 Visualization and image processing 106
4.5 Sensitivity 108

4.6 Flat (rectangular) beam technology 110
4.7 Converting existing XRF equipment to μ-XRF application 111
4.8 Commercial instrumentation 112
4.9 High-flux instrumentation 113
References 114

5 INSTRUMENTATION FOR \(\mu \)-XRF AT SYNCHROTRON SOURCES 117
A. Iida
5.1 Introduction 117
5.2 Synchrotron radiation sources 117
 5.2.1 General properties of synchrotron radiation 117
 5.2.2 Synchrotron radiation from bending magnets 121
 5.2.3 Insertion devices 124
 5.2.4 Storage ring and phase-space electron ellipse 127
5.3 Micro-XRF instrumentation at a synchrotron radiation facility 129
 5.3.1 Fundamental aspects of SR-excited X-ray fluorescence analysis 129
 5.3.2 Beamline layout for an X-ray microbeam facility 132
5.4 SR techniques for material characterization 139
 5.4.1 X-ray absorption fine structure analysis 139
 5.4.2 X-ray microdiffraction 145
 5.4.3 Microtomography 147
References 150

6 EVALUATION AND CALIBRATION OF \(\mu \)-XRF DATA 155
K. Janssens, L. Vincze and B. Vekemans
6.1 Introduction 155
6.2 Spectrum evaluation 156
6.3 Image processing and interpretation 163
 6.3.1 Color encoding 163
 6.3.2 Segmentation of multivariate data sets 164
6.4 Quantitative analysis 169
 6.4.1 General considerations 169
 6.4.2 Fundamental parameter method 170
 6.4.3 Information depth 182
 6.4.4 Self-absorption correction in heterogeneous samples 183
 6.4.5 Conditions for local homogeneity – factors determining lateral resolution 190
 6.4.6 Prediction of the spectral response of \(\mu \)-XRF spectrometers 192
 6.4.7 Analytical model for \(\mu \)-XRF analysis of individual particles 202
 6.4.8 Detection of systematic variations in \(\mu \)-XRF data due to topological effects 202

References 203
6.5 XRF tomography
References

7 COMPARISON WITH OTHER MICROANALYTICAL
TECHNIQUES
K. Janssens
7.1 Introduction
7.2 Microscopic X-ray emission techniques
 7.2.1 Beam penetration and flux density
 7.2.2 Detection limits
 7.2.3 Analysis of microscopic particles
 7.2.4 Combination with other modes of analysis
7.3 Imaging, lateral resolution and depth resolution
7.4 Sensitivity
7.5 Accuracy and precision
 7.5.1 Meteorites
 7.5.2 Synthetic glasses and melt inclusions
 7.5.3 REE analysis in standard glasses
 7.5.4 Analysis of REE and related elements in fossils
7.6 Beam-induced damage
7.7 Laboratory μ-XRF
 7.7.1 Analysis of glass fragments
7.8 Conclusions
References

8 APPLICATIONS IN THE GEOLOGICAL SCIENCES
Keith W. Jones
8.1 Introduction
8.2 Synchrotron radiation experimental beam lines
8.3 Synchrotron radiation induced X-ray fluorescence
 (SRXRF)
 8.3.1 Extraterrestrial materials
 8.3.2 Fluid inclusions
 8.3.3 Ore formation
 8.3.4 Determination of metals in sediments and in pore
 water
 8.3.5 Detection of rare earth elements
 8.3.6 Trace elements in minerals
8.4 X-ray diffraction
8.5 High-pressure experiments
8.6 Computed tomography experiments
8.7 XANES and EXAFS
8.8 Summary
9 APPLICATIONS IN ART AND ARCHAEOLOGY
K. Janssens and F. Adams
9.1 Introduction
9.2 Trace element fingerprinting
 9.2.1 Trace analysis of historic glass
 9.2.2 Analysis of inks
9.3 Microscopic analysis
 9.3.1 Glass corrosion
 9.3.2 Inclusions in iron artefacts
9.4 Local analysis of macroscopic objects
 9.4.1 Enamel decorations
 9.4.2 Coins and statues
 9.4.3 Ink on handwritten documents
9.5 Towards in-situ μ-XRF investigations
 9.5.1 Laboratory-built equipment
 9.5.2 Commercial equipment
 9.5.3 Compact focusing optics
9.6 Conclusions
References

10 ENVIRONMENTAL AND BIOLOGICAL APPLICATIONS OF μ-XRF
János Osán, Szabina Török, Anders Rindby
10.1 Industrial Applications of μ-XRF
10.2 Single-particle analysis
 10.2.1 Atmospheric particles
 10.2.2 Single aerosol particle analysis
 10.2.3 Analysis of fly-ash
 10.2.4 Trace element analysis of individual particles
 10.2.5 Elemental imaging of single particles
 10.2.6 Elemental mapping of particles deposited on plant surfaces
 10.2.7 Chemical state of specific elements in single particles
 10.2.8 Combined microfluorescence and microdiffraction analysis
10.3 Analysis of tree rings and wood tissues
 10.3.1 Trace element composition of tree rings
 10.3.2 Trace element analysis of single fibres in wood tissues
References
10.3.3 Density variations between and within individual rings 336
10.4 Other environmentally oriented biological applications 341
References 342

11 INDUSTRIAL APPLICATIONS OF μ-XRF 347
Donald A. Carpenter
11.1 Introduction 347
11.2 Plating and film thickness 348
11.3 Waste characterization 351
11.3.1 Electronic components 351
11.3.2 Development of new disposal methods 354
11.4 Forensics 358
11.4.1 Hair analysis 358
11.4.2 Particle analysis 361
11.5 Homogeneity of steel alloying elements 361
11.6 Materials analysis in the industrial laboratory 362
11.6.1 Analysis of metal pins 362
11.6.2 Analysis of spray nozzle 364
11.6.3 Analysis of amalgamated metal powders 364
11.6.4 Analysis of automobile catalyst 366
11.6.5 Characterization of moved oxide fuel surrogate feed material 366
11.7 Materials science applications using synchrotron radiation 366
11.8 Conclusions 367
Acknowledgments 368
References 368

12 THE FUTURE OF μ-XRF 371
F. Adams and K. Janssens
12.1 Introduction 371
12.1.1 Laboratory μ-XRF 371
12.1.2 Synchrotron radiation based μ-XRF 373
12.1.3 Detection and spectrometry of X-rays 376
12.2 Analytical characteristics 379
12.3 Quantitative analysis 380
12.4 Prospects 382
12.4.1 Laboratory μ-XRF 382
12.4.2 Synchrotron radiation μ-XRF 382
12.5 Summary 388
References 388

INDEX 393