Astronomical Optics
Second Edition

DANIEL J. SCHROEDER
Professor of Physics and Astronomy, Emeritus
Department of Physics and Astronomy
Beloit College,
Beloit, Wisconsin

ACADEMIC PRESS
A Harcourt Science and Technology Company
San Diego San Francisco New York Boston
London Sydney Tokyo
Preface

Chapter 1 Introduction
 1.1. A Bit of History 1
 1.2. Approach to Subject 4
 1.3. Outline of Book 4

Chapter 2 Preliminaries: Definitions and Paraxial Optics 7
 2.1. Sign Conventions 8
 2.2. Paraxial Equation for Refraction 9
 2.3. Paraxial Equation for Reflection 12
 2.4. Two-Surface Refracting Elements 14
 2.5. Two-Mirror Telescopes 17
 2.6. Stops and Pupils 22
 2.7. Concluding Remarks 25
 Bibliography 26

Chapter 3 Fermat’s Principle: An Introduction 27
 3.1. Fermat’s Principle in General 28
 3.2. Fermat’s Principle and Refracting Surfaces 31
 3.3. Wave Interpretation of Fermat’s Principle 36
 3.4. Fermat’s Principle and Reflecting Surfaces 37
 3.5. Conic Sections 41
 3.6. Fermat’s Principle and the Atmosphere 42
Contents

12.3. Fiber-Fed Spectrometers 317
12.4. Slitless Spectrometers 318
12.5. Spectrometers in Diffraction Limit
 References 320
 Bibliography 320

Chapter 13 Dispersing Elements and Systems 321

13.1. Dispersing Prism 321
13.2. Diffraction Grating; Basic Relations 323
13.3. Echelles 327
13.4. Grating Efficiency 331
13.5. Fabry-Perot Interferometer 342
13.6. Fourier Transform Spectrometer 347
13.7. Concluding Remarks
 References 350
 Bibliography 350

Chapter 14 Grating Aberrations; Concave Grating Spectrometers 352

14.1. Application of Fermat's Principle to Grating Surface 353
14.2. Grating Aberrations 357
14.3. Concave Grating Mountings 362
 References 367
 Bibliography 367

Chapter 15 Plane Grating Spectrometers 368

15.1. All-Reflecting Spectrometers 369
15.2. Pixel Matching 377
15.3. Fast Spectrometers 378
15.4. Fiber-Fed Spectrometers 383
15.5. Echelle Spectrometers 384
15.6. Nonobjective Slitless Spectrometers 396
15.7. Concluding Remarks
 References 407
 Bibliography 407

Chapter 16 Adaptive Optics: An Introduction 409

16.1. Effects of Atmospheric Turbulence 410
16.2. Correction of Wavefront Distortion 415
16.3. Adaptive Optics: Systems and Components 421
16.4. Concluding Remarks
 References 424
 Bibliography 424