Contents

Preface vii

Introduction 1

- What is in the Book 1
- How to Use the Book 3
- Notation and Conventions 5

VII THEORIES OF RECURSIVE FUNCTIONS 9

VII.1 Measures of Complexity 10

- Static complexity measures * 11
- Shortening proofs by adding axioms * 17
- Definition of a dynamic complexity measure 19
- First properties of dynamic complexity measures 23

VII.2 Speed of Computations 26

- Upper and lower bounds of the complexities of a function 26
- The Compression Theorem * 32
- Functions with best complexity 34
- The Speed-Up Theorem 38

VII.3 Complexity Classes 47

- Hierarchies for the recursive functions: successor levels * 50
- Hierarchies for the recursive functions: limit levels 55
- Hierarchies for the recursive functions: exhaustiveness * 59
- Names for complexity classes * 61

VII.4 Time and Space Measures 67

- One-tape Turing machines 67
- Other Turing machine models * 70
- Linear Speed-Up 76
- Hierarchy theorems 80
- Space versus time 84
- Nondeterministic Turing machines 86
VIII HIERARCHIES OF RECURSIVE FUNCTIONS

VIII.1 Small Time and Space Bounds

- Real time .. 147
- Constant space 150
- Logarithmic space 160

VIII.2 Deterministic Polynomial Time

- Polynomial time computable functions 163
- Closure properties 164
- Alternative characterizations 170
- Rate of growth 177
- Feasibly computable functions 178
- The class P 181
- Logarithmic space again and beyond 184
- A look inside P 187
- Polynomial time degrees 188

VIII.3 Nondeterministic Polynomial Time

- The class NP 198
- Deterministic polynomial time again 198
- NP sets as analogues of r.e. sets: successes . 199
- NP sets as analogues of r.e. sets: failures .. 208
- Relativizations 213
- Polynomial time degrees again 222

VIII.4 The Polynomial Time Hierarchy

- Truth in Bounded Quantifier Arithmetic 224
- Types of bounded quantifiers 225
- The Polynomial Time Hierarchy 226
- Second-Order Logic on finite domains 227
- The levels of the Polynomial Time Hierarchy 228
- Relativizations 231
IX RECURSIVELY ENUMERABLE SETS 357

IX.1 Global Properties of Recursive Sets 358
 Characterizations of the lattice of recursive sets 358
 The complexity of the theory of recursive sets 361
 Homogeneity 361
 Automorphisms 362
 Absolute definability 363
 Ultrafilters and models of fragments of Arithmetic * 364

IX.2 Local Properties of R.E. Sets 368
 Splitting theorems 368
 Hyperhypersimple sets 374
 R-maximal sets 376
 Maximal sets 379
 Sets without maximal supersets 385
 The world of simple sets * 393

IX.3 Global Properties of R.E. Sets 401
 The complexity of the theory of r.e. sets * 401
 Absolute definability 403
 Homogeneity 411
 Automorphisms 414
 Orbits * 422
 Definable and invariant classes of r.e. degrees * 423

IX.4 Complexity of R.E. Sets 424
 Nonspeedable sets 424
 Effectively speedable sets 431
 Existence theorems 435
 Complexity sequences * 438

IX.5 Inductive Inference of R.E. Sets * 447
 Identification by explanation of sets 447
 Identification by explanation of partial functions 452

X RECURSIVELY ENUMERABLE DEGREES 455

X.1 The Finite Injury Priority Method 456
 Motivation 456
 Embeddability results 459
 Sacks agreement method 464
 A tactical variation * 467

X.2 Effective Baire Category * 467
 Categorical formulation of finite injury arguments 468
 The permitting method 470
 Degrees r.e. in smaller degrees * 471
<table>
<thead>
<tr>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside truth-table degrees</td>
</tr>
<tr>
<td>Inside weak truth-table degrees</td>
</tr>
<tr>
<td>Inside Turing degrees</td>
</tr>
<tr>
<td>X.9 Index Sets</td>
</tr>
<tr>
<td>Complexity of index sets</td>
</tr>
<tr>
<td>Specific index sets</td>
</tr>
<tr>
<td>Applications of index sets to degrees</td>
</tr>
<tr>
<td>Global structure</td>
</tr>
</tbody>
</table>

XI LIMIT SETS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI.1 Jump Classes</td>
</tr>
<tr>
<td>Domination properties</td>
</tr>
<tr>
<td>Jump classes</td>
</tr>
<tr>
<td>Hops</td>
</tr>
<tr>
<td>Jump inversion below 0'</td>
</tr>
<tr>
<td>Generalized jump classes</td>
</tr>
<tr>
<td>XI.2 1-Generic Degrees</td>
</tr>
<tr>
<td>Full approximation arguments</td>
</tr>
<tr>
<td>Permitting below r.e. degrees</td>
</tr>
<tr>
<td>Permitting below GL2 degrees</td>
</tr>
<tr>
<td>Permitting below 1-generic degrees below 0'</td>
</tr>
<tr>
<td>XI.3 Structure Theory</td>
</tr>
<tr>
<td>The Diamond Theorem</td>
</tr>
<tr>
<td>Incomparable degrees</td>
</tr>
<tr>
<td>The Capping Theorem</td>
</tr>
<tr>
<td>The Cupping Theorem</td>
</tr>
<tr>
<td>The Complementation Theorem</td>
</tr>
<tr>
<td>Exact pairs and ideals</td>
</tr>
<tr>
<td>XI.4 Minimal Degrees</td>
</tr>
<tr>
<td>Methodology</td>
</tr>
<tr>
<td>Minimal degrees below 0'</td>
</tr>
<tr>
<td>Full approximation arguments</td>
</tr>
<tr>
<td>Permitting below r.e. degrees</td>
</tr>
<tr>
<td>The initial segments of the degrees below 0'</td>
</tr>
<tr>
<td>XI.5 Global Properties</td>
</tr>
<tr>
<td>Definability from parameters</td>
</tr>
<tr>
<td>The complexity of the theory of degrees below 0'</td>
</tr>
<tr>
<td>Absolute definability</td>
</tr>
<tr>
<td>Homogeneity</td>
</tr>
<tr>
<td>Automorphisms</td>
</tr>
<tr>
<td>Subclasses of degrees below 0'</td>
</tr>
<tr>
<td>Definability of 0' in the degrees</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>XXI.6 Many-One Degrees *</th>
<th>729</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial many-one reducibility</td>
<td>729</td>
</tr>
<tr>
<td>The mini-jump operator</td>
<td>732</td>
</tr>
<tr>
<td>Δ^0_2 many-one degrees</td>
<td>734</td>
</tr>
</tbody>
</table>

XII ARITHMETICAL SETS

XII.1 Forcing in Arithmetic
- Definition of forcing | 737 |
- Generic sets | 738 |
- Genericity without forcing * | 741 |
- An alternative approach to forcing * | 744 |
- History of the notion of forcing * | 747 |
- Product forcing * | 748 |
- Local forcing on trees | 751 |

XII.2 Applications of Forcing
- Turing degrees | 753 |
- Arithmetical reducibilities * | 755 |
- Arithmetical definability * | 758 |
- Implicit arithmetical definability * | 760 |
- ω-Hops | 765 |

XII.3 Turing Degrees of Arithmetical Sets
- Local and global properties | 769 |
- Cones of minimal covers | 773 |
- Definability of the Turing degrees of arithmetical sets | 776 |

XIII ARITHMETICAL DEGREES

XIII.1 The Theory of Arithmetical Degrees
- The finite extension method | 781 |
- The tree method | 784 |
- Arithmetical jump | 787 |
- Global properties | 787 |
- Arithmetical degrees below $0'_a$ | 791 |

XIII.2 An Analogue of R.E. Sets
- Basic properties | 794 |
- Representation of infinite hops | 796 |
- The complexity of ω-r.e.a. sets | 797 |

XIII.3 An Analogue of Post’s Problem
- A first approximation to the construction | 798 |
- The real construction | 800 |
- The basic module of the construction | 804 |
- The ingredients of the construction | 806 |
- An analogue of the Friedberg-Muchnik Theorem | 809 |
Contents

XIII.4 An Analogue of the Jump Classes 811
 The main result .. 811
 Jump classes ... 815
 Jump inversion ... 816
XIII.5 Comparison with the R.E. Degrees 817
 Minimal pairs ... 817
 The Diamond Theorem 824

XIV ENUMERATION DEGREES .. 827
XIV.1 Enumeration Degrees 827
 Total degrees ... 829
XIV.2 The Theory of Enumeration Degrees 833
 Minimal pairs ... 834
 Minimal covers ... 836
 Global properties 842
XIV.3 Enumeration Degrees below $0'_{e}$ 847
 Density ... 849
 Greatest lower bounds 851
 Least upper bounds 853
 Lattice embeddings 853
 Global properties 856
XIV.4 A Model of the Lambda Calculus * 857

Bibliography .. 863

Notation Index ... 923

Subject Index ... 929