PRINCIPLES AND METHODS IN SUPRAMOLECULAR CHEMISTRY

Hans-Jörg Schneider
Universität des Saarlandes, Saarbrücken, Germany

and

Anatoly K. Yatsimirsky
Universidad Nacional Autónoma de México, México

JOHN WILEY & SONS, LTD
Chichester • New York • Weinheim • Brisbane • Singapore • Toronto
CONTENTS

Foreword ix
Preface xi

A BASIC CONCEPTS OF HOST–GUEST COMPLEXATION WITH EXAMPLES FROM IONOPHORE CHEMISTRY 1
A 1. General principles of molecular recognition, complex formation and host design 1
 A 1.1. Thermodynamics of multi-site host–guest complexation 2
 A 1.2. Macrocycles, clefts, and open chain host structures 11
A 2. Ionophores for cations: chelate, macrocyclic and cryptate effects 11
A 3. Complexation selectivity, the hole-size concept and its limitations 17
A 4. Enthalpy and entropy contributions and compensations; heat capacity changes 22
A 5. Preorganization 25
A 6. Ionophores for anions 35
A 7. Macrocycles with secondary binding sites 42
 A 7.1. Lariat ethers 43
 A 7.2. Ditopic receptors 45
 A 7.3. Co-complexation 46
A 8. Second-sphere coordination 47
A 9. Conformational coupling between binding sites: cooperativity, allosteric effects and induced fit 50
A 10. Exercises and answers 58
References 62

B NON-COVALENT INTERACTIONS AND ORGANIC HOST–GUEST COMPLEXES 69
B 1. Quantification of non-covalent forces 69
B 2. Ion pairs 70
B 3. Hydrogen bonds 79
B 4. Cation–π-electron and related interactions 89
B 5. Van der Waals interactions, dispersive forces, stacking, charge transfer complexes and related interactions 95
 B 5.1. C–H–π and related interactions 95
 B 5.2. Stacking or face-to-face complexes 96
 B 5.3. Charge transfer complexes 101
Contents

B6. Hydrophobic (lipophilic) interactions 102
B7. Exercises and answers 110
References 113

C MEDIUM EFFECTS 119
C1. General considerations 119
C2. Solvent effects 120
C3. Salt effects 128
C4. Exercises and answers 133
References 134

D ENERGETICS OF SUPRAMOLECULAR COMPLEXES: EXPERIMENTAL METHODS 137
D1. Study of chemical equilibria 137
D1.1. General and practical considerations with 1:1 equilibria 137
D1.1.1. Direct determinations with slowly equilibrating complexes 138
D1.1.2. Spectrometric and other titrations 138
D1.2. Self-association 146
D1.2.1. Preliminary checks 146
D1.2.2. Measuring self-association constants 147
D1.3. Complexes with stoichiometries other than 1:1 148
D1.3.1. Methods for stoichiometry determination 148
D1.3.2. Titration curves for stoichiometries higher than 1:1 150
D1.4. Computer programs for equilibrium constant calculation 155
D2. Electrochemical methods 156
D2.1. Potentiometry 156
D2.1.1. Potentiometric titration with a glass electrode 157
D2.1.2. Potentiometry with ion-selective electrodes 162
D2.1.3. Potentiometry with metal-metal ion electrodes 163
D2.2. Macroscopic and microscopic protonation constants and acid–base behavior of macrocycles 164
D2.3. Polarography and cyclic voltammetry 171
D2.4. Conductometry 175
D3. Spectroscopic methods 177
D3.1. UV-visible and infrared spectroscopy 177
D3.2. Fluorescence spectroscopy 181
D3.3. Chiroptical methods 184
D3.4. Nuclear magnetic resonance 186
D3.4.1. NMR shift titrations and experimental considerations 186
D3.4.2. Evaluation of association constants and complexation-induced shifts (CIS) 188
D3.4.3. Affinities from NMR relaxation measurements 189
D3.5. Mass spectrometry 190
D3.5.1. Mass spectrometry study of solution equilibria 190
D3.5.2. Mass spectrometry study of gas phase equilibria 196
D4. Solubility and separation-based methods 197
D4.1. Solubility changes 198
D4.2. Extraction 200
D4.3. Chromatography and electrophoresis 202
D5. Calorimetry 205
D6. Kinetic methods 208
D7. Direct measurements of affinities and surface plasmon resonance 211
D8. Miscellaneous techniques and comparison of methods 212
D9. Exercises and answers 217
References 221

E STRUCTURAL METHODS 227
E1. Indirect approaches (competition experiments, structure–activity correlations) 227
E2. Diffraction techniques 228
E3. Supermicroscopy (STM, AFM, CFM, SNOM) 230
E4. NMR methods 231
 E4.1. NMR shielding (CIS values) for the evaluation of complex structure 231
 E4.2. NOE measurements for conformational analysis of supramolecular complexes 236
 E4.3. Solid state NMR-spectroscopy 241
E5. Chiroptical methods for structure elucidation 241
E6. Vibrational spectroscopy 244
E7. Computer aided molecular modeling 248
 E7.1. Recognition between molecular surfaces 251
 E7.2. Applications to supramolecular complexes 252
E8. Exercises and answers 255
References 255

F DYNAMICS OF SUPRAMOLECULAR SYSTEMS 259
F1. NMR methods 260
F2. Fluorescence methods 263
F3. Other techniques 264
References 265

G SURFACTANT-BASED SUPRAMOLECULAR SYSTEMS AND DENDRIMERS 267
G1. Monolayers 267
G2. Micelles and bilayers 270
G3. Dendrimers 275
References 277

H SHAPE RECOGNITION AND SOLID STATE INCLUSION COMPLEXES 279
H1. Carcerands and cavitands 279
H2. Clathrates and solid state inclusion complexes 280
H3. Molecular imprinting 282
References 284
viii Contents

I SELECTED APPLICATIONS 287

I1. Chiral discrimination 287

I2. Self-organization processes and applications 291
 I2.1. Template association and supramolecular synthesis 291
 I2.2. New materials and biomolecules 291
 I2.3. Self-replication and autocatalysis 298

I3. Supramolecular catalysis 301
 I3.1. Host–guest systems 301
 I3.2. Micellar catalysis 312

I4. Analytical applications 317
 I4.1. Optical devices 319
 I4.2. Electrochemical devices 321

I5. Molecular switches and supramolecular photochemistry 324

I6. Membrane transport 329

I7. Exercises and answers 333

References 335

APPENDICES 341

INDEX 347