Semi-Markov Models and Applications

Edited by

Jacques Janssen
Université Libre de Bruxelles, Belgium

and

Nikolaos Limnios
Université de Technologie de Compiègne, France
Contents

Contributors
Preface

Part I Extensions of Basic Models

1
The Solidarity of Markov Renewal Processes 3
Ronald Pyke
1. Prologue 3
2. Introduction 7
3. Preliminaries 8
4. Stable laws and solidarity 12
5. A basic identity for comparing inter-occurrence sums 15
6. Remark 19

2
A Generalization of Semi-Markov Processes 23
Marius Iosifescu
1. Introduction and summary 23
2. Definition and backward equations 24
3. The minimal solution 25
4. Criteria for non-uniqueness 28
5. Asymptotic behavior 29
6. The special case of semi-Markov processes 30
6.1 The forward equation 30
6.2 Asymptotic behavior 31
6.3 Open problems 32

3
Quasi-stationary Phenomena for Semi-Markov Processes 33
Mats Gyllenberg Dmitrii S. Silvestrov
1. Introduction 33
2. Exponential asymptotics for perturbed renewal equation 37
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Asymptotical expansions for moments of hitting times</td>
<td>45</td>
</tr>
<tr>
<td>4.</td>
<td>Nonlinearly perturbed semi-Markov processes</td>
<td>52</td>
</tr>
<tr>
<td>5.</td>
<td>Quasi-stationary distributions for perturbed semi-Markov processes</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Semi-Markov Random Walks</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Vladimir S. Korolyuk</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>The semi-Markov random walk</td>
<td>61</td>
</tr>
<tr>
<td>2.</td>
<td>A boundary problem for SMRW</td>
<td>63</td>
</tr>
<tr>
<td>3.</td>
<td>A semi-continuous SMRW</td>
<td>64</td>
</tr>
<tr>
<td>4.</td>
<td>Queueing system M</td>
<td>G</td>
</tr>
<tr>
<td>5.</td>
<td>Queueing system G</td>
<td>M</td>
</tr>
<tr>
<td>6.</td>
<td>Asymptotic analysis of SMRW in the series scheme</td>
<td>69</td>
</tr>
<tr>
<td>7.</td>
<td>Average scheme. Positive drift, ρ > 0</td>
<td>70</td>
</tr>
<tr>
<td>8.</td>
<td>Diffusion approximation (zero drift, ρ = 0)</td>
<td>71</td>
</tr>
<tr>
<td>9.</td>
<td>Problems of singular perturbation in average and the diffusion</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>approximation schemes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Diffusion Approximation for Processes with Semi-Markov Switches</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Vladimir V. Anisimov</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>2.</td>
<td>Switching stochastic processes</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>2.1 Preliminary remarks</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>2.2 Recurrent processes of a semi-Markov type</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2.3 Recurrent process of a semi-Markov type with additional Markov switches</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>2.4 General case of RPSM</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>2.5 Processes with semi-Markov switches</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2.6 Switching processes</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>2.7 Examples of Switching processes</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>PII with semi-Markov switches</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Random movements with SMP switches</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Dynamical systems in semi-Markov environment</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Stochastic differential equations with semi-Markov switches</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Switching state-dependent queueing models</td>
<td>85</td>
</tr>
<tr>
<td>3.</td>
<td>Averaging principle and diffusion approximation for RPSM</td>
<td>85</td>
</tr>
<tr>
<td>4.</td>
<td>Processes with semi-Markov switches</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>4.1 Asymptotically mixing environment</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4.2 Asymptotically consolidated environment</td>
<td>93</td>
</tr>
<tr>
<td>5.</td>
<td>Applications</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>5.1 Random movements</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>5.2 Semi-Markov state-dependent queueing models</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>5.3 Markov models with semi-Markov switches</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Approximations for Semi-Markov Single Ion Channel Models</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Susan M. Pitts</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>103</td>
</tr>
</tbody>
</table>
2. Results
 2.1 The framework
 2.2 The functionals
 2.3 Derivatives
3. Approximations

Part II Statistical Estimation

7
Log-likelihood in Stochastic Processes
George G. Roussas Debasis Bhattacharya
 1. Introduction
 2. Assumptions
 2.1 Some comments on the assumptions
 3. Asymptotic expansion and asymptotic normality
 4. Some auxiliary results
 5. Proof of theorems
Appendix

8
Some Asymptotic Results and Exponential Approximation in Semi-Markov Models
George G. Roussas Debasis Bhattacharya
 1. Introduction, notation, and some auxiliary results
 2. Assumptions and formulation of main results
 3. Some auxiliary results on random times
 3.1 Assumptions
 4. Proof of main results and some closing comments
 4.1 Some closing comments

9
Markov Renewal Processes and Exponential Families
Valeri T. Stefanov
 1. Introduction
 2. Noncurved exponential families associated with Markov renewal processes
 3. Application to limit theory
 4. Clusters of points
 5. Composite events

10
On Homogeneity of Two Semi-Markov Samples
Larisa Afanasyeva Peter Radchenko
 1. Introduction
 2. The model
 3. Calculation of DU
 4. Proof of the theorem
 5. The test
11
Product-Type Estimator of Convolutions
Ilya Gertsbakh I. Spungin
1. The product-type estimator of a convolution
2. Generating an estimate of $B_k(T)$
3. Crude Monte Carlo vs product-type estimator
4. Comparison of the product-type estimator with Brown’s estimator
5. Convolutions in simulating the time to absorption in a semi-Markov process

12
Failure Rate Estimation of Semi-Markov Systems
Brahim Ouhbi Nikolaos Limnios
1. Introduction
2. Preliminaries
3. Reliability and failure rate functions of a semi-Markov system
4. Estimator of the failure rate of a semi-Markov system
5. Numerical application

13
Estimation for Semi-Markov Manpower Models in a Stochastic Environment
Sally McClean Erin Montgomery
1. Introduction
2. The stochastic environment
3. Estimation
3.1 Estimation for the compromise matrix
3.2 Estimation for the S-NHMS
3.3 Estimation for the S-NHSMS
4. Using the model
5. Conclusion

14
Semi-Markov Models for Lifetime Data Analysis
Rafael Pérez-Ocón Juan Eloy Ruiz-Castro M. Luz Gámiz-Pérez
1. Introduction
2. The semi-Markov model
2.1 Transition probability functions
2.2 Maximum-likelihood function
3. Some data on survival times
4. Some data on failure times

Part III Non-Homogeneous Models
15
Continuous Time Non Homogeneous Semi-Markov Systems
Aleka A. Papadopoulou Panagiotis C.G. Vassiliou
1. Introduction
2. The model 242
3. Limiting behavior 245
4. Illustration: a special case 247

16
The Perturbed Non-Homogeneous Semi-Markov System 253
Panagiotis C.G. Vassiliou Helena Tsakiridou
1. Introduction 253
2. The perturbed non homogeneous semi-Markov system 254
3. The expected interval transition probabilities 259
4. The expected population structure 263

Part IV Queueing Systems Theory
17
Semi-Markov Queues with Heavy Tails 269
Soren Asmussen
1. Introduction 269
2. Sub-exponential distributions. Random walk results 271
3. Markov–modulated M/G/1 queues and related models 272
4. Structured Markov chains of the M/G/1 type 278

18
MR Modelling of Poisson Traffic at Intersections Having Separate Turn Lanes 285
Rudy Gideon Ronald Pyke
1. Introduction 286
2. The 4-state MRP on S_1 and S_2 288
3. An r-car right turn lane and ergodicity 294
4. Computations for an r-car right turn lane 299
5. Special cases of $r = 0, 1$ and $+\infty$ 302
6. The general case 308

Part V Financial Models
19
Stochastic Stability and Optimal Control in Insurance Mathematics 313
Anatoly Swishchuk
1. Introduction 313
2. Semi-Markov risk processes 314
4. Analogue of Dynkin’s formula for semi-Markov random evolutions 316
5. Boundary value problem for semi-Markov random evolutions 316
7. Stochastic optimal control of semi-Markov risk processes 320
20
Option Pricing with Semi-Markov Volatility 325
Jacques Janssen Raimondo Manca Ernesto Volpe
1. Introduction 325
2. The JMC semi-Markov model in stochastic finance 326
2.2 The explicit expression of $S(t)$ 328
3. Call option pricing 329
4. Stationary option pricing formula 331
5. Conclusions 332

Part VI Controlled Processes & Maintenance
21
Applications of Semi-Markov Processes in Reliability and Maintenance 337
Mohamed Abdel-Hameed
1. Introduction and summary 337
2. Basic results 338
3. Optimal replacement under the expected total discounted cost criterion 345
4. Optimal replacement under the long run average cost criterion 347

22
Controlled Queueing Systems with Recovery Functions 349
Tadashi Dohi Shunji Osaki Naoto Kaio
1. Introduction 350
2. Model description 351
3. Retry model 354
4. Repair model 357
5. Numerical examples and some remarks 359

Part VII Chromatography & Fluid Mechanics
23
Continuous Semi-Markov Models for Chromatography 367
Boris P. Harlamov
1. Introduction 367
2. Continuous semi-Markov process 368
3. Semi-Markov model of chromatography 373
3.1 Chromatography 373
3.2 Model of liquid column chromatography 375
3.3 Some monotone semi-Markov processes 378
3.4 Processes of transfer with terminal absorption 381
3.5 Process of transfer with diffusion 384

24
The Stress Tensor of the Closed Semi-Markov System. Energy and Entropy 391
Contents

George M. Tsaklidis

1. Introduction 391
2. The closed continuous-time semi-Markov model 392
3. The continuum viewpoint 394
4. The stress tensor of the closed continuous time HSMS 395
5. The energy equation 397
6. The entropy of the system 397

Index 401