SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

Principles and Applications

DAVID ATTWOOD

UNIVERSITY OF CALIFORNIA, BERKELEY
AND
LAWRENCE BERKELEY NATIONAL LABORATORY

CAMBRIDGE UNIVERSITY PRESS
Contents

PREFACE page xiii
ACKNOWLEDGMENTS xv

CHAPTER 1. INTRODUCTION 1
1.1 The Soft X-Ray and Extreme Ultraviolet Regions of the Electromagnetic Spectrum 1
1.2 Basic Absorption and Emission Processes 5
1.3 Atomic Energy Levels and Allowed Transitions 10
1.4 Scattering, Diffraction, and Refraction of Electromagnetic Radiation 18
References 21
Homework Problems 23

CHAPTER 2. RADIATION AND SCATTERING AT EUV AND SOFT X-RAY WAVELENGTHS 24
2.1 Maxwell’s Equations and the Wave Equation 24
2.2 Calculating Scattered Fields 27
2.3 Radiated Power and Poynting’s Theorem 33
2.4 Scattering Cross Sections 38
2.5 Scattering by a Free Electron 39
2.6 Scattering by Bound Electrons 41
2.7 Scattering by a Multi-electron Atom 44
References 53
Homework Problems 54

CHAPTER 3. WAVE PROPAGATION AND REFRACTIVE INDEX AT EUV AND SOFT X-RAY WAVELENGTHS 55
3.1 The Wave Equation and Refractive Index 56
3.2 Phase Variation and Absorption of Propagating Waves 61
3.3 Reflection and Refraction at an Interface 66
3.4 Total External Reflection of Soft X-Rays and EUV Radiation 69
CONTENTS

3.5 Reflection Coefficients at an Interface 71
3.5.1 E_0 Perpendicular to the Plane of Incidence 71
3.5.2 E_0 Parallel to the Plane of Incidence 77
3.6 Brewster's Angle 80
3.7 Field Penetration into a Lossy Medium Near the Critical Angle 82
3.8 Determination of δ and β: The Kramers–Kronig Relations 90
3.9 Applications to Glancing Incidence Optics 94
3.10 Enhanced Reflectivity from Periodic Structures 95

References 96
Homework Problems 97

CHAPTER 4. MULTILAYER INTERFERENCE COATINGS

4.1 Introduction 98
4.2 Constructive Interference of Scattered Radiation 99
4.3 Computational Model for Calculating Reflection from a Multilayer Mirror 103
4.4 Multilayer Fabrication 106
4.5 Applications of Multilayer Coated Optics 107
4.5.1 Soft X-Ray and Extreme Ultraviolet Photoemission Microscopy for Surface Science 108
4.5.2 Extreme Ultraviolet and Soft X-Ray Astronomy 108
4.5.3 Extreme Ultraviolet Lithography 110
4.5.4 Plasma Diagnostics 113
4.5.5 Polarization Studies of Magnetic Materials 114
4.5.6 The X-Ray Microprobe 116

References 119
Homework Problems 122

CHAPTER 5. SYNCHROTRON RADIATION

5.1 Introduction 124
5.2 Characteristics of Bending Magnet Radiation 126
5.3 Characteristics of Undulator Radiation 135
5.3.1 Undulator Radiation Pattern 137
5.3.2 The Central Radiation Cone 139
5.4 Undulator Radiation: Calculations of Radiated Power, Brightness, and Harmonics 141
5.4.1 The Undulator Equation 141
5.4.2 Comments on Undulator Harmonics 146
5.4.3 Power Radiated in the Central Radiation Cone 147
5.4.4 Power as a Function of Angle and Total Radiated Power 156
5.4.5 Spectral Bandwidth of Undulator Radiation 161
5.4.6 Spectral Brightness of Undulator Radiation 165
5.4.7 Time Structure 168
5.4.8 Polarization Properties of Undulator Radiation 170
5.5 The Scale of Harmonic Motion 172
Contents

APPENDIX A. UNITS AND PHYSICAL CONSTANTS

A.1 The International System of Units (SI) 417
A.2 Physical Constants 419
References 419

APPENDIX B. ELECTRON BINDING ENERGIES, PRINCIPAL K- AND L-SHELL EMISSION LINES, AND AUGER ELECTRON ENERGIES

References 427

APPENDIX C. ATOMIC SCATTERING FACTORS, ATOMIC ABSORPTION COEFFICIENTS, AND SUBSHELL PHOTOIONIZATION CROSS-SECTIONS

References 439

APPENDIX D. MATHEMATICAL AND VECTOR RELATIONSHIPS

D.1 Vector and Tensor Formulas 440
D.2 Series Expansions 441
D.3 Trigonometric Relationships 442
D.4 Definite Integrals 443
D.5 Functions of a Complex Variable 444
D.6 Fourier Transforms 447
D.7 The Dirac Delta Function 447
D.8 The Cauchy Principal Value Theorem 447
References 448

APPENDIX E. SOME INTEGRATIONS IN k, ω-SPACE

APPENDIX F. LORENTZ SPACE-TIME TRANSFORMATIONS

F.1 Frequency and Wavenumber Relations 456
F.2 Angular Transformations 458
F.3 The Lorentz Contraction of Length 460
F.4 Time Dilation 460
F.5 Transforming \(dP'/d\Omega' \) to \(dP/d\Omega \) 461
References 464

INDEX 465