Plasma Physics
Basic Theory with Fusion Applications

Third, Revised Edition
With 80 Figures

Springer
Contents

1. Introduction .. 1

Part I Basic Theory

2. Basic Properties of Plasma 6
 2.1 Plasma Condition .. 6
 2.2 Ideal Plasma ... 7
 2.3 Individual Motion and Collective Motion 10
 2.4 Types of Plasmas 11
 Problems .. 13

3. Individual Particle Motion 14
 3.1 General Relations 14
 3.2 Cyclotron Motion 15
 3.2.1 Guiding Center 17
 3.2.2 Adiabatic Invariant 17
 3.2.3 Magnetic Moment 18
 3.2.4 Magnetic Mirror 18
 3.2.5 Magnetic Mirror Trap 18
 3.2.6 Pitch Angle ... 19
 3.2.7 Longitudinal Invariant 19
 3.3 Drift Across a Magnetic Field 19
 3.3.1 Drift Velocity 19
 3.3.2 $E \times B$ Drift 20
 3.3.3 Curvature Drift 21
 3.3.4 Gradient B Drift 22
 3.4 Motion in an Oscillating Electric Field 24
 3.4.1 Polarization Drift 23
 3.4.2 Magnetic Field Effect 23
 3.4.3 Cyclotron Resonance 24
 3.4.4 Ponderomotive Force 24
 3.4.5 Magnetic Field Effect 25
 3.5 Coulomb Collisions 26
 3.5.1 Differential Cross Section 27
 3.5.2 Cumulative Small-Angle Scattering 28
6. General Theory of Linear Waves

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.1</td>
<td>Bounce Frequency</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Bernstein-Greene-Kruskal (BGK) Waves</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Quasilinear Effects</td>
</tr>
<tr>
<td>6.7</td>
<td>Source and Noise Level</td>
</tr>
<tr>
<td>6.8</td>
<td>Collision Integral</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>108</td>
</tr>
<tr>
<td>114</td>
</tr>
</tbody>
</table>

7. General Theory of Linear Waves

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Source and Response</td>
</tr>
<tr>
<td>7.2</td>
<td>Dielectric Tensor and the Dispersion Relation in a Uniform Plasma</td>
</tr>
<tr>
<td>7.3</td>
<td>Cold Plasma Model</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Unmagnetized Plasma</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Parallel Propagation</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Perpendicular Propagation</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Oblique Propagation</td>
</tr>
<tr>
<td>7.4</td>
<td>Wave Energy and Momentum</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Wave Energy Equation</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Wave Momentum</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Action</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Non-uniformity Effect</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
</tr>
<tr>
<td>118</td>
</tr>
<tr>
<td>122</td>
</tr>
<tr>
<td>124</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>126</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>128</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>134</td>
</tr>
</tbody>
</table>

8. Parametric Excitation and Mode Coupling

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Mathieu Equation Model</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The Case of $\omega_0 \approx 2\Omega_0$</td>
</tr>
<tr>
<td>8.1.2</td>
<td>The Case of $\omega_0 \approx \Omega_0$</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Effect of Damping</td>
</tr>
<tr>
<td>8.2</td>
<td>Coupled-Mode Parametric Excitation</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Dispersion Relation</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Uniform or Dipole Pump: $k_0 = 0$</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Stimulated Scattering</td>
</tr>
<tr>
<td>8.3</td>
<td>Coupled Electron Plasma Wave and Ion Acoustic Wave Parametric Excitation</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Electromagnetic Pump</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Stimulated Scattering</td>
</tr>
<tr>
<td>8.4</td>
<td>Nonlinear Wave–Particle Interaction – Nonlinear Landau Damping of an Electron Plasma Wave</td>
</tr>
<tr>
<td>8.5</td>
<td>Condensation and Collapse of Langmuir Waves</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
</tr>
<tr>
<td>136</td>
</tr>
<tr>
<td>137</td>
</tr>
<tr>
<td>138</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>141</td>
</tr>
<tr>
<td>143</td>
</tr>
<tr>
<td>144</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>149</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>153</td>
</tr>
</tbody>
</table>
Part II Applications to Fusion Plasmas

9. Plasma Confinement for Fusion
- **9.1 Principle of Thermonuclear Fusion**
- **9.1.1 D-D Reaction**
- **9.1.2 D-T Reaction**
- **9.1.3 Ignition Condition**
- **9.1.4 Lawson Criterion**
- **9.2 Magnetic Confinement and Heating of Plasmas**
 - **9.2.1 Open-End Confinement**
 - **9.2.2 Toroidal Confinement**
 - **9.2.3 Tokamak**
 - **9.2.4 Reversed Field Pinch and Spheromak**
 - **9.2.5 Helical System (Stellarator/Heliotron)**
- **9.3 Inertial Confinement and Compression of Plasma**

10. Ideal Magnetohydrodynamics
- **10.1 Basic Equations**
- **10.2 MHD Equilibrium**
- **10.3 Interchange Instability**
- **10.4 Rayleigh-Taylor Instability**
- **10.5 Current Driven Instability (I)**
- **10.6 MHD Waves**

11. Resistive Magnetohydrodynamics
- **11.1 Reduced MHD Equations**
 - **11.1.1 Slab Geometry**
 - **11.1.2 Toroidal Geometry**
- **11.2 Tearing Mode Instability and Magnetic Islands**
- **11.3 Current Driven Instability (II)**
- **11.4 Ballooning Instability**
- **11.5 Resistive Interchange and Rippling Modes**
- **11.6 Disruptive Instability**
- **11.7 Driven Magnetic Reconnection**
- **11.8 Self-Organization**

12. Wave–Plasma Interactions
- **12.1 Waves in Non-uniform Plasma**
 - **12.1.1 The Eikonal Approximation**
 - **12.1.2 The Local Dispersion Relation**
 - **12.1.3 Geometrical Optics**
 - **12.1.4 The Eigenvalue Problem**
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.5</td>
<td>Absolute vs Convective Instabilities</td>
<td>244</td>
</tr>
<tr>
<td>12.2</td>
<td>Accessibility of Waves in Magnetized Plasmas</td>
<td>244</td>
</tr>
<tr>
<td>12.3</td>
<td>RF Control of Magnetized Plasmas</td>
<td>251</td>
</tr>
<tr>
<td>12.4</td>
<td>Laser-Plasma Interaction</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>255</td>
</tr>
<tr>
<td>13.</td>
<td>Transport Processes</td>
<td>256</td>
</tr>
<tr>
<td>13.1</td>
<td>General Properties of Collisional Transport</td>
<td>256</td>
</tr>
<tr>
<td>13.2</td>
<td>Neoclassical Transport in Axisymmetric Toroidal Configurations</td>
<td>260</td>
</tr>
<tr>
<td>13.3</td>
<td>Neoclassical Transport in Nonaxisymmetric Magnetic Confinement</td>
<td>266</td>
</tr>
<tr>
<td>13.4</td>
<td>Convective Cell and Associated Transport</td>
<td>271</td>
</tr>
<tr>
<td>13.5</td>
<td>Drift Wave Turbulence and Associated Transport</td>
<td>274</td>
</tr>
<tr>
<td>13.6</td>
<td>MHD Turbulence and Associated Transport</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>280</td>
</tr>
<tr>
<td>14.</td>
<td>Progress in Fusion Research</td>
<td>282</td>
</tr>
<tr>
<td>14.1</td>
<td>A Brief History of Tokamak Research</td>
<td>282</td>
</tr>
<tr>
<td>14.2</td>
<td>Progress in Other Magnetic Confinement Research</td>
<td>288</td>
</tr>
<tr>
<td>14.3</td>
<td>Progress in Inertial Confinement Research</td>
<td>294</td>
</tr>
<tr>
<td>14.4</td>
<td>Plasma Physics Toward Fusion Reactors</td>
<td>296</td>
</tr>
<tr>
<td>A.</td>
<td>Appendix</td>
<td>303</td>
</tr>
<tr>
<td>A.1</td>
<td>Problems to Part I Basic Theory</td>
<td>303</td>
</tr>
<tr>
<td>A.2</td>
<td>Problems to Part II Applications to Fusion Plasmas</td>
<td>314</td>
</tr>
</tbody>
</table>

References .. 327

Subject Index ... 337