A Guide to
Monte Carlo Simulations in
Statistical Physics

David P. Landau
Center for Simulational Physics, The University of Georgia

Kurt Binder
Institut für Physik, Johannes-Gutenberg-Universität Mainz
Contents

Preface xi

1 Introduction 1
 1.1 What is a Monte Carlo simulation? 1
 1.2 What problems can we solve with it? 2
 1.3 What difficulties will we encounter? 3
 1.3.1 Limited computer time and memory 3
 1.3.2 Statistical and other errors 3
 1.4 What strategy should we follow in approaching a problem? 4
 1.5 How do simulations relate to theory and experiment? 4

2 Some necessary background 7
 2.1 Thermodynamics and statistical mechanics: a quick reminder 7
 2.1.1 Basic notions 7
 2.1.2 Phase transitions 13
 2.1.3 Ergodicity and broken symmetry 24
 2.1.4 Fluctuations and the Ginzburg criterion 25
 2.1.5 A standard exercise: the ferromagnetic Ising model 25
 2.2 Probability theory 27
 2.2.1 Basic notions 27
 2.2.2 Special probability distributions and the central limit theorem 29
 2.2.3 Statistical errors 30
 2.2.4 Markov chains and master equations 31
 2.2.5 The 'art' of random number generation 32
 2.3 Non-equilibrium and dynamics: some introductory comments 39
 2.3.1 Physical applications of master equations 39
 2.3.2 Conservation laws and their consequences 40
 2.3.3 Critical slowing down at phase transitions 43
 2.3.4 Transport coefficients 45
 2.3.5 Concluding comments 45
 References 46

3 Simple sampling Monte Carlo methods 48
 3.1 Introduction 48
 3.2 Comparisons of methods for numerical integration of given functions 48
Contents

3.2.1 Simple methods 48
3.2.2 Intelligent methods 50
3.3 Boundary value problems 51
3.4 Simulation of radioactive decay 53
3.5 Simulation of transport properties 54
3.5.1 Neutron transport 54
3.5.2 Fluid flow 55
3.6 The percolation problem 56
3.6.1 Site percolation 56
3.6.2 Cluster counting: the Hoshen–Kopelman algorithm 59
3.6.3 Other percolation models 60
3.7 Finding the groundstate of a Hamiltonian 60
3.8 Generation of ‘random’ walks 61
3.8.1 Introduction 61
3.8.2 Random walks 62
3.8.3 Self-avoiding walks 63
3.8.4 Growing walks and other models 65
3.9 Final remarks 66
References 66

4 Importance sampling Monte Carlo methods 68
4.1 Introduction 68
4.2 The simplest case: single spin-flip sampling for the simple Ising model 69
4.2.1 Algorithm 70
4.2.2 Boundary conditions 74
4.2.3 Finite size effects 77
4.2.4 Finite sampling time effects 90
4.2.5 Critical relaxation 98
4.3 Other discrete variable models 105
4.3.1 Ising models with competing interactions 105
4.3.2 q-state Potts models 109
4.3.3 Baxter and Baxter–Wu models 110
4.3.4 Clock models 112
4.3.5 Ising spin glass models 112
4.3.6 Complex fluid models 113
4.4 Spin-exchange sampling 114
4.4.1 Constant magnetization simulations 114
4.4.2 Phase separation 115
4.4.3 Diffusion 117
4.4.4 Hydrodynamic slowing down 119
4.5 Microcanonical methods 119
4.5.1 Demon algorithm 119
4.5.2 Dynamic ensemble 120
4.5.3 Q2R 120
4.6 General remarks, choice of ensemble 121
Contents

4.7 Statics and dynamics of polymer models on lattices 121
4.7.1 Background 121
4.7.2 Fixed length bond methods 122
4.7.3 Bond fluctuation method 123
4.7.4 Polymers in solutions of variable quality: θ-point, collapse transition, unmixing 124
4.7.5 Equilibrium polymers: a case study 127
4.8 Some advice 130
References 130

5 More on importance sampling Monte Carlo methods for lattice systems 133
5.1 Cluster flipping methods 133
 5.1.1 Fortuin–Kasteleyn theorem 133
 5.1.2 Swendsen–Wang method 134
 5.1.3 Wolff method 137
 5.1.4 ‘Improved estimators’ 138
5.2 Specialized computational techniques 139
 5.2.1 Expanded ensemble methods 139
 5.2.2 Multispin coding 139
 5.2.3 N-fold way and extensions 140
 5.2.4 Hybrid algorithms 142
 5.2.5 Multigrid algorithms 142
 5.2.6 Monte Carlo on vector computers 143
 5.2.7 Monte Carlo on parallel computers 143
5.3 Classical spin models 144
 5.3.1 Introduction 144
 5.3.2 Simple spin-flip method 144
 5.3.3 Heatbath method 146
 5.3.4 Low temperature techniques 147
 5.3.5 Over-relaxation methods 147
 5.3.6 Wolff embedding trick and cluster flipping 148
 5.3.7 Hybrid methods 149
 5.3.8 Monte Carlo dynamics vs. equation of motion dynamics 150
 5.3.9 Topological excitations and solitons 150
5.4 Systems with quenched randomness 154
 5.4.1 General comments: averaging in random systems 154
 5.4.2 Random fields and random bonds 157
 5.4.3 Spin glasses and optimization by simulated annealing 158
5.5 Models with mixed degrees of freedom: Si/Ge alloys, a case study 163
5.6 Sampling the free energy and entropy 164
 5.6.1 Thermodynamic integration 164
 5.6.2 Groundstate free energy determination 166
 5.6.3 Estimation of intensive variables: the chemical potential 166
 5.6.4 Lee–Kosterlitz method 167
5.6.5 Free energy from finite size dependence at T_c 167
5.7 Miscellaneous topics 168
 5.7.1 Inhomogeneous systems: surfaces, interfaces, etc. 168
 5.7.2 Other Monte Carlo schemes 173
 5.7.3 Finite size effects: a review and summary 174
 5.7.4 More about error estimation 175
 5.7.5 Random number generators revisited 176
5.8 Summary and perspective 178
References 179

6 Off-lattice models 182
6.1 Fluids 182
 6.1.1 NVT ensemble and the virial theorem 182
 6.1.2 NpT ensemble 185
 6.1.3 Grand canonical ensemble 189
 6.1.4 Subsystems: a case study 192
 6.1.5 Gibbs ensemble 197
 6.1.6 Widom particle insertion method and variants 200
6.2 ‘Short range’ interactions 202
 6.2.1 Cutoffs 202
 6.2.2 Verlet tables and cell structure 202
 6.2.3 Minimum image convention 202
 6.2.4 Mixed degrees of freedom reconsidered 203
6.3 Treatment of long range forces 203
 6.3.1 Reaction field method 203
 6.3.2 Ewald method 204
 6.3.3 Fast multipole method 204
6.4 Adsorbed monolayers 205
 6.4.1 Smooth substrates 205
 6.4.2 Periodic substrate potentials 206
6.5 Complex fluids 207
6.6 Polymers: an introduction 210
 6.6.1 Length scales and models 210
 6.6.2 Asymmetric polymer mixtures: a case study 216
 6.6.3 Applications: dynamics of polymer melts; thin adsorbed polymeric films 219
6.7 Configurational bias and ‘smart Monte Carlo’ 224
References 227

7 Reweighting methods 230
7.1 Background 230
 7.1.1 Distribution functions 230
 7.1.2 Umbrella sampling 230
7.2 Single histogram method: the Ising model as a case study 233
7.3 Multi-histogram method 240
7.4 Broad histogram method 240
7.5 Multicanonical sampling 241
7.5.1 The multicanonical approach and its relationship to canonical sampling 241
7.5.2 Near first order transitions 243
7.5.3 Groundstates in complicated energy landscapes 244
7.5.4 Interface free energy estimation 245
7.6 A case study: the Casimir effect in critical systems 246
References 248

8 Quantum Monte Carlo methods 250
8.1 Introduction 250
8.2 Feynman path integral formulation 252
 8.2.1 Off-lattice problems: low-temperature properties of crystals 252
 8.2.2 Bose statistics and superfluidity 258
 8.2.3 Path integral formulation for rotational degrees of freedom 259
8.3 Lattice problems 261
 8.3.1 The Ising model in a transverse field 261
 8.3.2 Anisotropic Heisenberg chain 263
 8.3.3 Fermions on a lattice 266
 8.3.4 An intermezzo: the minus sign problem 269
 8.3.5 Spinless fermions revisited 271
 8.3.6 Cluster methods for quantum lattice models 274
 8.3.7 Decoupled cell method 275
 8.3.8 Handscomb's method 276
 8.3.9 Fermion determinants 277
8.4 Monte Carlo methods for the study of groundstate properties 278
 8.4.1 Variational Monte Carlo (VMC) 279
 8.4.2 Green's function Monte Carlo methods (GFMC) 280
8.5 Concluding remarks 283
References 283

9 Monte Carlo renormalization group methods 286
9.1 Introduction to renormalization group theory 286
9.2 Real space renormalization group 290
9.3 Monte Carlo renormalization group 291
 9.3.1 Large cell renormalization 291
 9.3.2 Ma's method: finding critical exponents and the fixed point Hamiltonian 293
 9.3.3 Swendsen's method 294
 9.3.4 Location of phase boundaries 296
 9.3.5 Dynamic problems: matching time-dependent correlation functions 297
References 298

10 Non-equilibrium and irreversible processes 299
10.1 Introduction and perspective 299
10.2 Driven diffusive systems (driven lattice gases) 299
10.3 Crystal growth 301
10.4 Domain growth

10.5 Polymer growth

10.5.1 Linear polymers

10.5.2 Gelation

10.6 Growth of structures and patterns

10.6.1 Eden model of cluster growth

10.6.2 Diffusion limited aggregation

10.6.3 Cluster–cluster aggregation

10.6.4 Cellular automata

10.7 Models for film growth

10.7.1 Background

10.7.2 Ballistic deposition

10.7.3 Sedimentation

10.7.4 Kinetic Monte Carlo and MBE growth

10.8 Outlook: variations on a theme

References

11 Lattice gauge models: a brief introduction

11.1 Introduction: gauge invariance and lattice gauge theory

11.2 Some technical matters

11.3 Results for $Z(N)$ lattice gauge models

11.4 Compact $U(1)$ gauge theory

11.5 SU(2) lattice gauge theory

11.6 Introduction: quantum chromodynamics (QCD) and phase transitions of nuclear matter

11.7 The deconfinement transition of QCD

References

12 A brief review of other methods of computer simulation

12.1 Introduction

12.2 Molecular dynamics

12.2.1 Integration methods (microcanonical ensemble)

12.2.2 Other ensembles (constant temperature, constant pressure, etc.)

12.2.3 Non-equilibrium molecular dynamics

12.2.4 Hybrid methods (MD + MC)

12.2.5 *Ab initio* molecular dynamics

12.3 Quasi-classical spin dynamics

12.4 Langevin equations and variations (cell dynamics)

12.5 Lattice gas cellular automata

References

13 Outlook

Appendix: listing of programs mentioned in the text

Index