METHODS OF X-RAY AND NEUTRON SCATTERING IN POLYMER SCIENCE

Ryong-Joon Roe
Department of Materials Science and Engineering
University of Cincinnati

New York Oxford
OXFORD UNIVERSITY PRESS
2000
1 Basics of X-Ray and Neutron Scattering

1.1 Properties of X-Rays and Neutrons

1.2 Scattering and Interference

1.3 Scattering of X-Rays

1.4 Scattering of Neutrons

1.5 Autocorrelation Function and Reciprocal Space

1.6 Scattering due to the Sample as a Whole

1.7 Diffraction by Crystals

Further Reading

References

Exercises
2 Experimental Techniques

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Radiation Source</td>
<td>37</td>
</tr>
<tr>
<td>2.1.1 X-Ray</td>
<td>37</td>
</tr>
<tr>
<td>2.1.1.1 X-Ray Tubes</td>
<td>37</td>
</tr>
<tr>
<td>2.1.1.2 Spectrum of X-Rays Generated</td>
<td>39</td>
</tr>
<tr>
<td>2.1.1.3 Synchrotron Radiation Source</td>
<td>40</td>
</tr>
<tr>
<td>2.1.2 Neutron</td>
<td>45</td>
</tr>
<tr>
<td>2.1.2.1 Nuclear Reactor</td>
<td>45</td>
</tr>
<tr>
<td>2.1.2.2 Neutron Guide</td>
<td>46</td>
</tr>
<tr>
<td>2.1.2.3 Pulsed Neutron Source</td>
<td>47</td>
</tr>
<tr>
<td>2.2 Monochromatization</td>
<td>48</td>
</tr>
<tr>
<td>2.2.1 Crystal Monochromator</td>
<td>48</td>
</tr>
<tr>
<td>2.2.2 Neutron Velocity Selector</td>
<td>51</td>
</tr>
<tr>
<td>2.3 Absorption</td>
<td>53</td>
</tr>
<tr>
<td>2.3.1 Absorption Coefficient</td>
<td>53</td>
</tr>
<tr>
<td>2.3.2 Wavelength Dependence</td>
<td>55</td>
</tr>
<tr>
<td>2.3.3 Filters</td>
<td>55</td>
</tr>
<tr>
<td>2.4 Detectors</td>
<td>57</td>
</tr>
<tr>
<td>2.4.1 Proportional and Scintillation Counters</td>
<td>58</td>
</tr>
<tr>
<td>2.4.1.1 Proportional Counter</td>
<td>58</td>
</tr>
<tr>
<td>2.4.1.2 Scintillation Counter</td>
<td>59</td>
</tr>
<tr>
<td>2.4.2 Position-Sensitive Detectors</td>
<td>60</td>
</tr>
<tr>
<td>2.4.3 Counting Statistics</td>
<td>61</td>
</tr>
<tr>
<td>2.4.4 Integrating Detectors</td>
<td>63</td>
</tr>
<tr>
<td>2.5 Cameras and Diffractometers</td>
<td>65</td>
</tr>
<tr>
<td>2.5.1 Collimation</td>
<td>66</td>
</tr>
<tr>
<td>2.5.2 Focusing Geometry</td>
<td>69</td>
</tr>
<tr>
<td>2.5.3 Diffractometer</td>
<td>71</td>
</tr>
<tr>
<td>2.6 Multiple Scattering</td>
<td>74</td>
</tr>
<tr>
<td>2.7 Absolute Intensity Calibration</td>
<td>77</td>
</tr>
</tbody>
</table>

Further Reading 80
References 80

3 Crystalline Polymers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>3.2 Lattice Parameters</td>
<td>84</td>
</tr>
<tr>
<td>3.2.1 Indexing</td>
<td>84</td>
</tr>
</tbody>
</table>
3.2.2 Precision Measurement of Lattice Parameters 87
3.2.3 Examples of Lattice Parameter Measurements with Polymers 88

3.3 Crystal Structure Analysis 90
3.3.1 Fourier Synthesis 90
 3.3.1.1 Effect of Symmetry 92
 3.3.1.2 Resolution of the Fourier Map 94
3.3.2 Performing the Structure Analysis 95
 3.3.2.1 Patterson Function 95
 3.3.2.2 Methods of Phase-Angle Determination 97
 3.3.2.3 Structure Refinement 98
3.3.3 Examples of Crystal Structure of Polymers 99

3.4 Line Broadening and Crystal Imperfections 101
3.4.1 Instrumental Broadening 102
3.4.2 Small Crystal Size 102
3.4.3 Crystal Imperfections 104
3.4.4 Crystal Imperfection of the First Kind 108
3.4.5 Crystal Imperfection of the Second Kind 110
3.4.6 Summary 113

3.5 Degree of Crystallinity 114
3.5.1 Evaluation of the Degree of Crystallinity 115
3.5.2 Ruland's Method 116
3.5.3 A Method Based on Small-Angle Scattering 117

3.6 Orientation 118
3.6.1 Orientation Distribution of Plane-Normals (Poles) 118
 3.6.1.1 Uniaxial and Biaxial Orientation 118
 3.6.1.2 Methods of Measurement 120
 3.6.1.3 Pole Figure 122
3.6.2 Orientation Parameters 123
 3.6.2.1 Hermans Orientation Parameter 123
 3.6.2.2 Biaxial Orientation Parameters 126
3.6.3 Crystallite Orientation Distribution Function 128

Further Reading 132
References 132

4 Amorphous Polymers 134

4.1 Short-Range Order 134
 4.1.1 Pair Distribution Function: Cases with a Single Atomic Species 134
4.1.2 Pair Distribution Function: Cases with More Than One Atomic Species 137
4.1.3 Isotropic Polymers 140
4.1.4 Uniaxially Oriented Polymers 145

4.2 Thermal Density Fluctuation 147

Further Reading 154
References 154

5 Small-Angle Scattering 155

5.1 Model Structures Studied by Small-Angle Scattering 155

5.2 Dilute Particulate System 157
5.2.1 Radius of Gyration 158
5.2.2 Independent Scattering from Particles of Simple Geometric Shape 160
5.2.2.1 Sphere 160
5.2.2.2 Thin Rod 161
5.2.2.3 Thin Circular Disk 162
5.2.2.4 Comparison of the Three Intensity Curves 162
5.2.3 Independent Scattering from a Polymer Chain 162
5.2.3.1 Gaussian Chain 162
5.2.3.2 Worm-like Chain 164
5.2.4 Guinier law 167
5.2.4.1 Derivation of Guinier Law 168
5.2.4.2 Samples Containing Nonidentical Particles 170
5.2.5 Effect of Dense Packing 170

5.3 Nonparticulate Two-Phase System 174
5.3.1 Correlation Function and Invariant 174
5.3.2 Ideal Two-Phase Model 176
5.3.2.1 Invariant 177
5.3.2.2 Porod Law 178
5.3.2.3 Specific Interface Area and Length of Inhomogeneity 181
5.3.3 Deviations from the Ideal Two-Phase Model 184
5.3.3.1 Density Fluctuation within the Phases 184
5.3.3.2 Diffuse Interface Boundary 185

5.4 Fractal Objects 188
5.4.1 Definitions 188
5.4.2 Scattering from Fractal Objects 190
5.4.2.1 Scattering from a Mass Fractal 190
5.4.2.2 Scattering from a Surface Fractal 191
5.5 Periodic System 193
- 5.5.1 Scattering from Lamellar Structure 194
 - 5.5.1.1 Ideal Two-Phase Lamellar Structure 194
 - 5.5.1.2 Structure with Variable Lamella Thickness 196
- 5.5.2 Correlation Function of Lamellar Structure 201

5.6 Slit Collimation and Desmearing 204
- 5.6.1 Slit Collimation 204
- 5.6.2 Slit Desmearing 205
- 5.6.3 Infinite Slit Approximation 206

Further Reading 208
References 208

6 Polymer Blends, Block Copolymers, and Deuterium Labeling 210

6.1 Polymer Blends 210
- 6.1.1 Zero-Angle Scattering 210
 - 6.1.1.1 Dilute Polymer Solution 212
 - 6.1.1.2 Polymer Blend 212
 - 6.1.1.3 Flory-Huggins Free Energy of Mixing 215
- 6.1.2 Finite-Angle Scattering 217
 - 6.1.2.1 Some General Relationships and Assumptions 218
 - 6.1.2.2 Dilute Polymer Solution 222
 - 6.1.2.3 Polymer Blend 223

6.2 Block Copolymers 224

6.3 Deuterium Labeling 228
- 6.3.1 High Concentration Labeling 228
- 6.3.2 Method of Contrast Variation 230
- 6.3.3 Deuterium Isotope Effect 233

Further Reading 235
References 235

7 Study of Surfaces and Interfaces 236

7.1 Introduction 236

7.2 Reflectivity 238
- 7.2.1 Refractive Index 238
- 7.2.2 Snell's Law and Fresnel's Law 240
- 7.2.3 Reflectivity from a System with Two Parallel Interfaces 243
8 Inelastic Neutron Scattering 261

8.1 Theory of Inelastic Scattering 261
 8.1.1 Inelastic Scattering Cross Section 263
 8.1.2 van Hove Correlation Function 264
 8.1.3 Coherent and Incoherent Scattering 266

8.2 Simple Models of Motions 269
 8.2.1 Translational Diffusion 269
 8.2.2 Rotation 270
 8.2.3 Vibration 274
 8.2.4 Combination of Different Kinds of Motions 277

8.3 Spectrometers 278
 8.3.1 Triple-Axis Spectrometer 279
 8.3.2 Time-of-Flight Spectrometer 279
 8.3.3 Back-Scattering Spectrometer 280
 8.3.4 Spin-Echo Spectrometer 281

8.4 Examples of Experimental Studies 284

Further Reading 290
References 290

Appendix A. Refresher on Complex Numbers 291
Appendix B. Fourier Transform 293
 B.1 Definitions 293
 B.1.1 Fourier Transform 293
 B.1.2 Cosine and Sine Transforms 294
 B.2 Properties of Fourier Transform 294
 B.2.1 Addition 294