Weak versus Strong Sustainability
Exploring the Limits of Two Opposing Paradigms

Eric Neumayer
London School of Economics and Political Science, London, UK

Edward Elgar
Cheltenham, UK • Northampton, MA, USA
Contents

List of Figures ix
List of Tables xi
List of Variables xiii
List of Abbreviations and Acronyms xv
Preface xvii

1 INTRODUCTION AND OVERVIEW 1

2 CONCEPTUAL, ETHICAL AND PARADIGMATIC ISSUES OF SUSTAINABLE DEVELOPMENT 8
2.1 Definitions, assumptions, methodology 8
2.2 The ethics of sustainable development 15
2.2.1 Reasons for committing to sustainable development 15
2.2.2 The time-consistency problem of sustainable development 17
2.2.3 Two misunderstandings about sustainable development resolved 19
2.3 Weak versus strong sustainability 22
2.3.1 The paradigm of weak sustainability 23
2.3.2 The paradigm of strong sustainability 26
2.4 The importance of the substitutability assumption: the case of global warming 29
2.4.1 The neoclassical approach towards global warming: the Nordhaus models 30
2.4.2 Critiques of the Nordhaus models: why discounting is not the issue 33
2.4.3 The real issue: substitutability of natural capital 37
2.5 Conclusion 40

3 RESOURCES, THE ENVIRONMENT AND ECONOMIC GROWTH: WHY BOTH PARADIGMS OF SUSTAINABILITY ARE NON-FALSIFIABLE 44
3.1 A short history of resource and environmental concern 45
3.2 Resource availability 47
3.2.1 Substitution with other resources 48
Weak versus Strong Sustainability

3.2.2 The role of prices in overcoming resource constraints
3.2.3 Substitution with man-made capital
3.2.4 The role of technical progress in overcoming resource constraints

3.3 Environmental degradation
3.3.1 Can future generations be compensated for long-term environmental degradation?
3.3.2 Economic growth and environmental degradation

3.4 Conclusion

4 Preserving Natural Capital in a World of Risk, Uncertainty and Ignorance
4.1 Distinctive features of natural capital
4.2 Risk, uncertainty and ignorance
4.3 Which forms of natural capital should be preserved?
4.4 Total versus marginal values and policy principles to cope with risk, uncertainty and ignorance
4.4.1 The precautionary principle
4.4.2 An environmental bond system
4.4.3 Safe minimum standards (SMSs)
4.5 How much preservation? The problem of opportunity cost
4.6 Least-cost measures for preserving natural capital
4.6.1 Abolishing environmentally and economically harmful subsidies
4.6.2 Abating economically harmful pollution
4.6.3 Substituting market-based for command-and-control instruments
4.6.4 Changing the tax base of the economy?
4.6.5 Tighter regulations for increasing productivity?
4.7 Conclusion

5. Can Sustainability Be Measured?
5.1 Weak sustainability: measuring genuine saving (GS)
5.1.1 The Hartwick rule
5.1.2 GS in a closed economy: a model of optimal growth
5.1.3 GS in an open economy
5.1.4 Practical problems with measuring GS
5.1.5 A critique of the World Bank (1997a) study
5.1.6 A critique of the Index of Sustainable Economic Welfare (ISEW)
5.2 Strong sustainability: measuring the ‘sustainability gap’
5.2.1 Determining the sustainability standards
5.2.2 Measuring the sustainability gap in physical terms 193
5.2.3 Monetary valuation of the sustainability gap 195
5.2.4 Problems with a monetary valuation of the ‘sustainability gap’ 195
5.3 Conclusion 198

6 CONCLUSIONS 206

Appendix 1 How present-value maximisation can lead to extinction 212
Appendix 2 The Hotelling rule and Ramsey rule in a simple general equilibrium model 214
Appendix 3 The Hotelling rule and the Ramsey rule for the model of gNNP 218
Appendix 4 Proof of Hartwick’s rule for a model of gNNP 222
Appendix 5 The structure of data underlying World Bank (1997a) 227
Appendix 6 Alphabetical list of countries in World Bank (1997a) 229
Appendix 7 Grouping of countries according to World Bank (1997a) 231
Appendix 8 Frequency of negative Extended Genuine Saving II rates in World Bank (1997a) 235
Appendix 9 Sources of data for computing user costs according to the El Serafy method 236

Bibliography 238
Index 283