Linear Models in Statistics

ALVIN C. RENCHER
Department of Statistics
Brigham Young University
Provo, Utah
Contents

Preface xiii
Acknowledgments xvii

1. Introduction 1
 1.1 Simple Linear Regression Model, 1
 1.2 Multiple Linear Regression Model, 2
 1.3 Analysis of Variance Models, 3

2. Matrix Algebra 5
 2.1 Matrix and Vector Notation, 5
 2.1.1 Matrices, Vectors, and Scalars, 5
 2.1.2 Matrix Equality, 6
 2.1.3 Transpose, 6
 2.1.4 Matrices of Special Form, 7
 2.2 Operations, 8
 2.2.1 Sum of Two Matrices or Two Vectors, 9
 2.2.2 Product of Two Matrices or Two Vectors, 9
 2.3 Partitioned Matrices, 14
 2.4 Rank, 17
 2.5 Inverse, 19
 2.6 Positive Definite Matrices, 21
 2.7 Systems of Equations, 25
 2.8 Generalized Inverse, 29
 2.8.1 Definition and Properties, 29
 2.8.2 Generalized Inverses and Systems of Equations, 32
 2.9 Determinants, 33
 2.10 Orthogonal Vectors and Matrices, 37
2.11 Trace, 39
2.12 Eigenvalues and Eigenvectors, 41
 2.12.1 Definition, 41
 2.12.2 Functions of a Matrix, 44
 2.12.3 Products, 45
 2.12.4 Symmetric Matrices, 46
 2.12.5 Positive Definite and Positive Semidefinite Matrices, 48
2.13 Idempotent Matrices, 48
2.14 Derivatives of Linear Functions and Quadratic Forms, 50

3. Random Vectors and Matrices 62
 3.1 Introduction, 62
 3.2 Means, Variances, Covariances, and Correlations, 63
 3.3 Mean Vectors and Covariance Matrices for Random Vectors, 67
 3.3.1 Mean Vector, 67
 3.3.2 Covariance Matrix, 68
 3.3.3 Generalized Variance, 69
 3.3.4 Standardized Distance, 69
 3.4 Correlation Matrices, 70
 3.5 Mean Vectors and Covariance Matrices for Partitioned Random
 Vectors, 70
 3.6 Linear Functions of Random Vectors, 71
 3.6.1 Means, 72
 3.6.2 Variances and Covariances, 73

4. Multivariate Normal Distribution 77
 4.1 Univariate Normal Density Function, 77
 4.2 Multivariate Normal Density Function, 78
 4.3 Moment-Generating Functions, 80
 4.4 Properties of the Multivariate Normal Distribution, 82
 4.5 Partial Correlation, 89

5. Distribution of Quadratic Forms in y 93
 5.1 Sums of Squares, 93
 5.2 Mean and Variance of Quadratic Forms, 95
 5.3 Noncentral Chi-Square Distribution, 99
 5.4 Noncentral F- and t-distributions, 101
 5.4.1 Noncentral F-distribution, 101
 5.4.2 Noncentral t-distribution, 102
 5.5 Distribution of Quadratic Forms, 103
5.6 Independence of Linear Forms and Quadratic Forms, 105

6. Simple Linear Regression
 6.1 The Model, 112
 6.2 Estimation of β_0, β_1, and σ^2, 113
 6.3 Hypothesis Test and Confidence Interval for β_1, 116
 6.4 Coefficient of Determination, 118

7. Multiple Regression: Estimation
 7.1 Introduction, 121
 7.2 The Model, 121
 7.3 Estimation of β and σ^2, 125
 7.3.1 Least Squares Estimator for β, 125
 7.3.2 Properties of the Least Squares Estimator $\hat{\beta}$, 129
 7.3.3 An Estimator for σ^2, 133
 7.4 Geometry of Least Squares, 136
 7.4.1 Variable Space, 136
 7.4.2 Sample Space, 136
 7.5 The Model in Centered Form, 138
 7.6 Normal Model, 142
 7.6.1 Assumptions, 142
 7.6.2 Maximum Likelihood Estimators for β and σ^2, 142
 7.6.3 Properties of $\hat{\beta}$ and $\hat{\sigma^2}$, 143
 7.7 R^2 In Fixed-x Regression, 145
 7.8 Generalized Least Squares: $\text{cov}(y) = \sigma^2 V$, 148
 7.8.1 Estimation of β and σ^2 When $\text{cov}(y) = \sigma^2 V$, 149
 7.8.2 Misspecification of the Error Structure, 151
 7.9 Model Misspecification, 153
 7.10 Orthogonalization, 159

8. Multiple Regression: Tests of Hypotheses and Confidence Intervals
 8.1 Test of Overall Regression, 170
 8.2 Test on a Subset of the β's, 175
 8.3 F-Test in Terms of R^2, 183
 8.4 The General Linear Hypothesis Tests for $H_0: C\beta = 0$ and $H_0: C\beta = t$, 184
 8.4.1 The Test for $H_0: C\beta = 0$, 184
 8.4.2 The Test for $H_0: C\beta = t$, 189
 8.5 Tests on β_j and $a'\beta$, 191
 8.5.1 Testing One β_j or One $a'\beta$, 191
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.2 Testing Several β_j’s or $a_i'\beta$’s</td>
<td>192</td>
</tr>
<tr>
<td>8.6 Confidence Intervals and Prediction Intervals</td>
<td>197</td>
</tr>
<tr>
<td>8.6.1 Confidence Region for β</td>
<td>197</td>
</tr>
<tr>
<td>8.6.2 Confidence Interval for β_j</td>
<td>197</td>
</tr>
<tr>
<td>8.6.3 Confidence Interval for $a_i'\beta$</td>
<td>198</td>
</tr>
<tr>
<td>8.6.4 Confidence Interval for $E(y)$</td>
<td>199</td>
</tr>
<tr>
<td>8.6.5 Prediction Interval for a Future Observation</td>
<td>200</td>
</tr>
<tr>
<td>8.6.6 Confidence Interval for σ^2</td>
<td>202</td>
</tr>
<tr>
<td>8.6.7 Simultaneous Intervals</td>
<td>203</td>
</tr>
<tr>
<td>8.7 Likelihood Ratio Tests</td>
<td>204</td>
</tr>
<tr>
<td>9. Multiple Regression: Model Validation and Diagnostics</td>
<td>214</td>
</tr>
<tr>
<td>9.1 Residuals</td>
<td>214</td>
</tr>
<tr>
<td>9.2 The Hat Matrix</td>
<td>217</td>
</tr>
<tr>
<td>9.3 Outliers</td>
<td>219</td>
</tr>
<tr>
<td>9.4 Influential Observations and Leverage</td>
<td>222</td>
</tr>
<tr>
<td>10. Multiple Regression: Random x’s</td>
<td>228</td>
</tr>
<tr>
<td>10.1 Multivariate Normal Regression Model</td>
<td>229</td>
</tr>
<tr>
<td>10.2 Estimation in Multivariate Normal Regression</td>
<td>229</td>
</tr>
<tr>
<td>10.3 R^2 in Multivariate Normal Regression</td>
<td>237</td>
</tr>
<tr>
<td>10.4 Tests and Confidence Intervals</td>
<td>240</td>
</tr>
<tr>
<td>10.5 Effect of Each Variable on R^2</td>
<td>245</td>
</tr>
<tr>
<td>10.6 Prediction for Nonnormal Data</td>
<td>247</td>
</tr>
<tr>
<td>10.7 Sample Partial Correlations</td>
<td>249</td>
</tr>
<tr>
<td>11. Analysis of Variance Models</td>
<td>259</td>
</tr>
<tr>
<td>11.1 Non-Full-Rank Models</td>
<td>259</td>
</tr>
<tr>
<td>11.1.1 One-Way Model</td>
<td>259</td>
</tr>
<tr>
<td>11.1.2 Two-Way Model</td>
<td>262</td>
</tr>
<tr>
<td>11.2 Estimation</td>
<td>265</td>
</tr>
<tr>
<td>11.2.1 Estimability of β</td>
<td>265</td>
</tr>
<tr>
<td>11.2.2 Estimable Functions of β</td>
<td>268</td>
</tr>
<tr>
<td>11.3 Estimators</td>
<td>272</td>
</tr>
<tr>
<td>11.3.1 Estimators of $\lambda'\beta$</td>
<td>272</td>
</tr>
<tr>
<td>11.3.2 Estimator of σ^2</td>
<td>277</td>
</tr>
<tr>
<td>11.3.3 Normal Model</td>
<td>278</td>
</tr>
<tr>
<td>11.4 Reparameterization</td>
<td>279</td>
</tr>
<tr>
<td>11.5 Side Conditions</td>
<td>281</td>
</tr>
<tr>
<td>11.6 Testing Hypotheses</td>
<td>284</td>
</tr>
</tbody>
</table>
11.6.1 Testable Hypotheses, 284
11.6.2 Full and Reduced Model, 285
11.6.3 General Linear Hypothesis, 287
11.7 An Illustration of Estimation and Testing, 289
11.7.1 Estimable Functions, 290
11.7.2 Testing a Hypothesis, 291
11.7.3 Orthogonality of Columns of X, 293

12. One-Way Analysis of Variance: Balanced Case
12.1 The One-Way Model, 300
12.2 Estimable Functions, 301
12.3 Estimation of Parameters, 302
12.3.1 Solving the Normal Equations, 302
12.3.2 An Estimator for σ^2, 304
12.4 Testing the Hypothesis $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$, 305
12.4.1 Full and Reduced Model, 305
12.4.2 General Linear Hypothesis, 309
12.5 Expected Mean Squares, 312
12.5.1 Full and Reduced Model, 313
12.5.2 General Linear Hypothesis, 315
12.6 Contrasts, 317
12.6.1 Hypothesis Test for a Contrast, 317
12.6.2 Orthogonal Contrasts, 318
12.6.3 Orthogonal Polynomial Contrasts, 323

13. Two-Way Analysis of Variance: Balanced Case
13.1 The Two-Way Model, 337
13.2 Estimable Functions, 338
13.3 Estimators of $\lambda'\beta$ and σ^2, 342
13.3.1 Solving the Normal Equations and Estimating $\lambda'\beta$, 342
13.3.2 An Estimator for σ^2, 344
13.4 Testing Hypotheses, 345
13.4.1 Test for Interaction, 345
13.4.2 Tests for Main Effects, 354
13.5 Expected Mean Squares, 362
13.5.1 Sums of Squares Approach, 362
13.5.2 Quadratic Form Approach, 363

14. Analysis of Variance: Unbalanced Data
14.1 Introduction, 371
14.2 One-Way Model, 372
 14.2.1 Estimation and Testing, 372
 14.2.2 Contrasts, 374
14.3 Two-Way Model, 377
 14.3.1 Unconstrained Model, 378
 14.3.2 Constrained Model, 384

15. Analysis of Covariance 392
 15.1 Introduction, 392
 15.2 Estimation and Testing, 393
 15.2.1 The Analysis of Covariance Model, 393
 15.2.2 Estimation, 395
 15.2.3 Testing Hypotheses, 397
 15.3 One-Way Model with One Covariate, 397
 15.3.1 The Model, 398
 15.3.2 Estimation, 398
 15.3.3 Testing Hypotheses, 399
 15.4 Two-Way Model with One Covariate, 405
 15.4.1 Tests for Main Effects and Interactions, 406
 15.4.2 Test for Slope, 410
 15.4.3 Test for Homogeneity of Slopes, 411
 15.5 One-Way Model with Multiple Covariates, 412
 15.5.1 The Model, 412
 15.5.2 Estimation, 413
 15.5.3 Testing Hypotheses, 416
 15.6 Analysis of Covariance with Unbalanced Models, 421

 16.1 Introduction, 426
 16.2 Estimation of $\lambda^{'}\beta$ and Prediction of a in $y = X\beta + Za + e$, 429
 16.2.1 Best Linear Unbiased Estimator of $\lambda^{'}\beta$, 429
 16.2.2 Best Linear Unbiased Predictor of the Random Vector a, 430
 16.3 Estimation of Variance Components, 432
 16.3.1 Expected Mean Squares, 433
 16.3.2 ANOVA Estimators, 436
 16.4 Hypothesis Tests, 436

17. Additional Models 440
 17.1 Nonlinear Regression, 440
 17.2 Logistic Regression, 441
17.3 Loglinear Models, 444
17.4 Poisson Regression, 445
17.5 Generalized Linear Models, 446

A. Answers and Hints to Selected Problems 449

B. Data Sets and SAS Files 561

Bibliography 563