OPTICS

by

A H Tonnacliffe BA, PhD, Dip Maths, DCLP, FCOptom

and

J G Hirst BSc, M Phil, Grad. Cert. Ed.
Chapter 1 Propagation and Velocity of Light

1.0 Introduction 1
1.1 The rectilinear propagation of light 1
1.2 Wavefronts and the vergence of light 4
 Vergence 5
 The sign convention 5
 The unit of vergence 6
 Examples 6
 Vergence and the curvature of wavefront 8
 Effectivity 9
 Aperture, radius of curvature, and sagitta 10
1.3 The formation of shadows 11
 Example 12
1.4 The pinhole camera 13
1.5 The velocity of light 14
 Fizeau's toothed-wheel experiment 15
 Michelson's rotating mirror experiment 16
 Bergstrand's method using the Kerr cell 16

Exercises 18

Chapter 2 Refraction at Plane and Curved Surfaces

2.0 Introduction 19
2.1 Refraction at plane surfaces 19
 The laws of refraction 20
 Refraction by Huygens' principle 21
 Refractive index 21
 Graphical ray tracing for refraction 22
 Refractive indices and reversibility of light 23
 Refraction by parallel sided layers of materials 25
 The refraction formula in its general form 26
 Formation of an image - real and apparent depth 28
 Change in wavefront curvature 31
 Total reflection and the critical angle 32
 Examples of total internal reflection 34
 Refraction by prisms, the mirage, and fibre optics 34
 Refraction by prisms 35
 Minimum deviation 38
 Total internal reflection 40
 Ophthalmic prisms 41
 The image formed by a prism 43
 Reflecting prisms 44
2.2 Refraction at curved surfaces 47
 Converging and diverging refracting surfaces 47
 Refraction by a single spherical surface 47
 The fundamental paraxial equation 48
 The optical sign convention 50
 The power of a refracting surface 51
 Reduced vergences 51
 Linear magnification of the image 52
 Focal lengths of a single refracting surface 55
 Newton's equations 58
 Graphical construction for images 60

Exercises 61

Chapter 3 Thin Lenses

3.0 Introduction 63
3.1 Spherical surfaced lenses 63
 Lens forms 63
 Lens specification 65
 Principal foci and focal lengths of a lens 67
 Formation of images by thin lenses 69
 Graphical construction of images 69
 Measurement of curvature by spherometer 77
 Measurement of power: the lens measure 77
 The effectivity of a lens 77
 The smallest separation of object and real image 79
 Newton's equations for thin lenses 80
 Two thin lenses in contact 81
 The prismatic effect of a thin lens 82
3.2 Sphero-cylindrical lenses 83
 The cylindrical lens 84
 The sphero-cylindrical lens 85
 The line foci and disc of least confusion 87
 The toric lens 88
 Two plano-cylindrical lenses in contact 89
 Worked example 91
 The equivalent sphere and cylinder 91
 The Stokes lens 93
3.3 Fresnel lenses and prisms

Exercises 94

Chapter 4 Lens Systems

4.0 Introduction
4.1 Simple lens system - two thin lenses in air 96
 Vertex power and vertex focal lengths 96
 Worked examples 99
 Principal points and equivalent power 100
 Positions of the equivalent thin lens 100
 Equivalent power and equivalent focal lengths 102
 Examples of principal planes of lens systems 102
 Object and image positions, and magnification 103
 Newton's formulae 103
 Step-along vergences 104
 The conjugate foci relationship 10
 The nodal points of a simple lens system 107
 The optical centre of a simple lens system 107
 Ray tracing using nodal points 108
 Unit planes 109
 Formulae for simple (two lens) systems 109
 The equivalent power 109
 The vertex powers 110
 The positions of the principal planes 110
 Methods of solution of problems 111
 Worked example 113
4.2 Thick lenses
 Surface powers and reduced thickness 115
 Thick lens formulae 116
 Focal points and principal points of a thick lens in air 116
Contents

4.2 Thick lenses (cont.)
 Examples of principal planes of thick lenses 117
 Object and image position and magnification 117
 Newton's formulae 118
 Conjugate foci relationship 119
 Step-along vergences 119
 Nodal points and optical centre of a thick lens 120
 The general case of a thick lens 121
 Formulae 121
 Nodal points and paraxial ray tracing 123
 Worked examples 124

4.3 Multirefracting systems 126
 The human eye and a schematic eye 127

4.4 Worked problems 128
 A system of three lenses in air 128
 A simplified 3-surface model eye 130
 A reduced model eye 132

Exercises 134

Chapter 5 Plane and Curved Mirrors

5.0 Introduction 136
5.1 Reflection of light at plane surfaces 136
 The laws of regular refraction 137
 Reflection of light waves by Huygens' principle 138
 Reversibility of a light ray 138
 The formation of an image by a plane mirror 138
 Reversion of an extended image in a plane mirror 139
 Summary of the characteristics of the image 139
 The sight-testing chart 140
 Worked example 140
 The minimum size of a plane mirror 141
 The rotation of a plane mirror 141
 Deviation by reflection at two inclined mirrors 142
 Images formed by inclined mirrors 143
 Multiple images in mirrors 144
 The thick mirror – Position of the bright image 144

5.2 Reflection of light at curved surfaces 145
 Types of spherical mirrors 145
 Reflection of pencil of rays which is parallel to the axis 145
 A wide aperture spherical mirror 145
 Narrow aperture spherical mirrors 146
 Forms of reflecting surface 146
 Focal length and radius of curvature 148
 Formation of images by spherical mirrors 148
 Graphical constructions 149
 Calculations for images 151
 Worked examples 152
 Power and vergences with mirrors 154
 Worked example 155
 Newton's equations 155
 Catadioptric systems – the equivalent mirror 156
 Vergence method in a catadioptric system 157
 Worked example 157

Exercises 159

Chapter 6 The Dispersion of Light and Colour

6.1 Introduction 160
6.2 Newton's prism experiments 161
6.3 Dispersive power and constringence 163
6.4 Prism combinations 166
 The direct vision spectroscope 166
 The achromatic prism 166
 Worked examples 167
 The irrationality of dispersion 168

6.5 Colour 169
 Characteristics of colour 169
 Coloured paper and coloured glass 170
 Colour addition 171
 Colour subtraction 172
 Colour filters 172
 Paints and pigments 173
 Other colour effects 173
 The trichromatic system of colorimetry 174
 Infrared and ultraviolet radiations 175

Exercises 176

Chapter 7 Aberrations

7.0 Introduction 178
7.1 Classification of aberrations 178
7.2 The chromatic aberrations 179
 Formulae for chromatic aberration 181
 Correction of chromatic aberration 182
 Two thin lenses in contact 182
 Two separated thin lenses 183
 Worked examples 184

7.3 The monochromatic aberrations 186
 Spherical aberration 187
 Spherical aberration and a single spherical surface 190
 Coma 191
 Oblique astigmatism 195
 Variation of oblique astigmatism 197
 The position of the tangential image 199
 The position of the sagittal image 200
 Oblique astigmatism for central refraction 200
 Curvature of field 202
 Distortion 204
 Ray tracing at spherical surfaces 207
 Young's graphical construction 207
 Dowell's graphical construction 207
 Trigonometrical ray tracing 208
 Worked example 210

Exercises 212
Chapter 8 The Principles of Optical Instruments

8.0 Introduction 214
8.1 Non-visual instruments 214
 The camera 214
 The f-number 214
 The camera lens 215
 The telephoto lens 216
 Depth of focus and depth of field 217
 The hyperfocal distance 219
 The projector and the enlarger 220
8.2 The eye 221
 The visual angle and retinal image size 222
8.3 Visual instruments 223
 The simple magnifier 223
 Nominal and maximum angular magnification 225
 Iso-accommodative magnification 226
 Worked examples 227
 Eyepieces 228
 The Huygens eyepiece 228
 The Ramsden eyepiece 229
 The microscope 230
 Worked examples 231
 The telescope 233
 The astronomical telescope 233
 The terrestrial telescope 235
 The terrestrial telescope with lens erecter 235
 The terrestrial telescope with prism erecter 235
 The Galilean telescope 236
 The reflecting telescope 237
 The Schmidt catadioptric system 238
 The spectrometer 238
 Measurement of the refractive index of a prism material 240
 The direct vision spectroscope 241
 The Abbe refractometer 242
8.4 Stops in optical instruments 243
 Iris (aperture stop) and field stop 244
 Entrance and exit pupils 245
 Worked example 247
 Field of view, entrance and exit windows 247
 Entrance and exit pupils with telescopes 249
 Field of view with telescopes 251
 Worked examples 253
8.5 The focimeter 254
 The basic principle of the focimeter 255
 The focimeter equation 255
 Movement of the target 256
 Power, prism and cylinder axis scales 257
 Determination of power and axis 259
 The focimeter filter 260
 Focusing the eyepiece 260
 Back vertex position error 260
 The projection focimeter 261
Exercises 262

Chapter 9 Photometry

9.0 Introduction 261
9.1 Visual sensitivity 261
9.2 Solid angles 266
9.3 The standard source and the candela 266
9.4 Working standards 267
9.5 Luminous flux 268
9.6 The luminous intensity of a source 269
 The mean spherical intensity of a source 269
9.7 Illuminance 270
9.8 The two fundamental laws of photometry 271
 Worked examples 272
9.9 Reflectance, transmittance, and optical density 273
 Reflectance 273
 Effect of a reflector on the illuminance of a surface 274
 Worked example 274
 Transmittance 275
 Effect of a transmission filter on illuminance 275
 Worked example 276
 Optical density 276
 Worked example 277
9.10 Luminance and brightness 278
 Uniformly diffusing surfaces 280
 The luminance of images 280
9.11 Photometers 281
 The Weber-Fechner law 282
 Visual photometers 283
 The grease-spot photometer 283
 The wax-block photometer 283
 The shadow photometer 284
 The Lummer-Brodhun photometer 284
 The flicker photometer 285
 The integrating photometer 286
 Non-visual (physical) photometry 287
 The photovoltaic cell 287
9.12 Luminous efficacy of a source 287
 Worked examples 288
Exercises 289

Chapter 10 Light Waves

10.0 Introduction 291
10.1 One-dimensional waves 292
10.2 Sinusoidal waves 293
 Introduction 293
 Sine waves 293
 Equivalent moving wave equations 294
 Examples 294
10.3 Phase and phase velocity 295
 Phase and initial phase 295
 Phase or wave velocity 296
Exercises 298
Chapter 16 Imagery
– spatial distribution of optical information

16.0 Introduction 461
16.1 Imagery 461
 Spatial frequencies – introduction 461
 Image filtering 463
 The cosinusoidal grating 463
 Square wave gratings 465
 Abbe’s theory of image formation 467
 Spatial filtering 469
 Phase objects and phase contrast 470
 Dark field or dark ground observation 473

16.2 Evaluating imaging systems 475
 The modulation transfer function 477
 Linear and angular spatial frequency 477
 Analysis of modulation transfer 479
 Defocus blur and the MTF in a reduced eye 481
 Spurious resolution 483
 MTFs, cut-off frequency, and Rayleigh’s criterion 484

16.3 The laser 485
 The first laser 485
 The helium-neon laser 486
 Laser applications 487
 Speckle patterns 488

16.4 Holography 489
 Continuous wave holography 489
 Pulsed laser holography 490
 Experimental difficulties 491
 The mathematics of holography 491

Exercises 492

Appendices

Appendix 1 Fourier analysis 494
Appendix 2 Useful trigonometrical identities 497
Appendix 3 Apparent displacement 498
 Deviation by a reflecting prism 498
 The fundamental paraxial equation 499
 Minimum separation of an object and real image 500
 The bright image in a thick mirror 500
 Conjugate foci formula for a spherical mirror 501
 Magnification formula for mirrors 502
 Hyperfocal distance 503
 Fermat’s principle 503
 The laws of reflection 503
 The laws of refraction 504

Appendix 4 Similar triangles 505
 Small angles 506
 Solid angles 506

Appendix 5 Definition of the candela 507

Appendix 6 Radiometry and photometry 508
 Introduction 508
 Inverse square law and cosine laws of irradiance 508

Appendix 6 Radiometry and photometry (cont.)
 Multiple point sources 509
 Extended sources 509
 Irradiance of an area dA_2 by a source of area dA_1 510
 Lambert’s law 511
 Photometric quantities 511
 Luminous flux 512
 Luminous intensity and illuminance 512
 Luminance 512
 Luminous exitance 512
 Reflectance and transmittance 513
 The luminance of an optical image 514
 The luminance of an image projected onto a screen 515

Appendix 7 Curvature 516

Appendix 8 Step along and step back vergences 517
 Back and front vertex powers of a lens 518
 Equivalent power of a lens 519

Appendix 9 Spherical aberration 519

Index of Tables 520

Index 521