Handbook of Optical Constants of Solids

Edited by

EDWARD D. PALIK
Naval Research Laboratory
Washington, D.C.
Contents

List of Contributors xiv
Preface xvii

Part I DETERMINATION OF OPTICAL CONSTANTS

Chapter 1 Introductory Remarks 3
EDWARD D. PALIK

I. Introduction 3
II. The Chapters 4
III. The Critiques 5
IV. The Tables 6
V. The Figures of the Tables 7
VI. General Remarks 8
 References 9

Chapter 2 Basic Parameters for Measuring Optical Properties 11
ROY F. POTTER

I. Introduction 11
II. Intrinsic Material Parameters in Terms of Optical Constants 16
III. Reflectance, Transmittance, and Absorptance 18
 of Layered Structures
IV. The General Lamelliform—Phase Coherency Throughout 19
V. The General Lamelliform—Phase Incoherency in Substrate 21
VI. Summary 24

Appendix A. Basic Formulas for Fresnel Coefficients 24
Appendix B. General Formulas for the Case of a Parallel-Sided Slab 25
Appendix C. Reflectance, R_{jk} at $j-k$ Interface 26
Appendix D. Reflectance of Single Layer on Each Side of a Slab and Single 26
 Layer on Either Side of a Slab
Appendix E. Critical Angle of Incidence 30
 Definition of Terms 33
 References 34

Chapter 3 Dispersion Theory, Sum Rules, and Their Application 35
 to the Analysis of Optical Data
 D. Y. SMITH

I. Introduction 36
II. Optical Sum Rules and Their Physical Interpretation 36
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Finite-Energy Sum Rules</td>
<td>45</td>
</tr>
<tr>
<td>IV</td>
<td>Sum Rules for Reflection Spectroscopy</td>
<td>51</td>
</tr>
<tr>
<td>V</td>
<td>Analysis of Optical Data and Sum-Rule Applications</td>
<td>55</td>
</tr>
<tr>
<td>VI</td>
<td>Summary</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Chapter 4 Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region</td>
<td>69</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>II</td>
<td>General Discussion of Reflectance Methods</td>
<td>70</td>
</tr>
<tr>
<td>III</td>
<td>Reflectance Method for Two Media</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Chapter 5 The Accurate Determination of Optical Properties by Ellipsometry</td>
<td>89</td>
</tr>
<tr>
<td>I</td>
<td>Reflection Techniques; Background and Overview</td>
<td>89</td>
</tr>
<tr>
<td>II</td>
<td>Measurement Configurations</td>
<td>92</td>
</tr>
<tr>
<td>III</td>
<td>Accurate Determination of Optical Properties: Overlayer Effects</td>
<td>96</td>
</tr>
<tr>
<td>IV</td>
<td>Living with Overlayers</td>
<td>99</td>
</tr>
<tr>
<td>V</td>
<td>Eliminating Overlayers</td>
<td>102</td>
</tr>
<tr>
<td>VI</td>
<td>Bulk and Thin-Film Effects; Effective-Medium Theory</td>
<td>104</td>
</tr>
<tr>
<td>VII</td>
<td>Conclusion</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Chapter 6 Interferometric Methods for the Determination of Thin-Film Parameters</td>
<td>113</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>II</td>
<td>Basic Principles</td>
<td>114</td>
</tr>
<tr>
<td>III</td>
<td>Nonlaser Interferometers</td>
<td>117</td>
</tr>
<tr>
<td>IV</td>
<td>Kösters-Prism Interferometers</td>
<td>123</td>
</tr>
<tr>
<td>V</td>
<td>A Self-Calibrating Method</td>
<td>126</td>
</tr>
<tr>
<td>VI</td>
<td>Surface Effects</td>
<td>131</td>
</tr>
<tr>
<td>VII</td>
<td>Conclusions</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Chapter 7 Thin-Film Absorptance Measurements Using Laser Calorimetry</td>
<td>135</td>
</tr>
<tr>
<td>I</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>II</td>
<td>Single-Layer Films</td>
<td>138</td>
</tr>
<tr>
<td>III</td>
<td>Wedged-Film Laser Calorimetry</td>
<td>139</td>
</tr>
<tr>
<td>IV</td>
<td>Electric-Field Considerations in Laser Calorimetry</td>
<td>143</td>
</tr>
<tr>
<td>V</td>
<td>Entrance versus Exit Surface Films</td>
<td>147</td>
</tr>
</tbody>
</table>
Contents

VI. Experimental Determination of α_f, a_{nf}, and a_{fb} References 149 153

Chapter 8 Complex Index of Refraction Measurements at Near-Millimeter Wavelengths 155
GEORGE J. SIMONIS

I. Introduction 155
II. Fourier Transform Spectroscopy 156
III. Free-Space Resonant Cavity 161
IV. Mach–Zehnder Interferometer 163
V. Direct Birefringence Measurement 164
VI. Overmoded Nonresonant Cavity 165
VII. Crystal Quartz as Index Reference 165
VIII. Conclusion 167
References 167

Chapter 9 The Quantum Extension of the Drude–Zener Theory in Polar Semiconductors 169
B. JENSEN

I. Introduction 169
II. Quantum Theory of Free-Carrier Absorption 172
III. Theoretical Results 174
IV. Comparison with Experimental Data 176
Appendix 187
References 188

Chapter 10 Interband Absorption—Mechanisms and Interpretation 189
DAVID W. LYNCH

I. Introduction 189
II. One-Electron Model 190
III. Electron–Hole Interaction, Excitons 198
IV. Local Field Effects 203
V. Examples 204
References 210
General References 211

Chapter 11 Optical Properties of Nonmetallic Solids for Photon Energies below the Fundamental Band Gap 213
SHASHANKA S. MITRA

I. Introduction 213
II. Infrared Dispersion by Polar Crystals 215
III. Kramers–Kronig Dispersion Relations 227
IV. Determination of Absorption Coefficient in the Intermediate Region 229
V. Absorption Coefficient in the Transparent Regime 230
VI. Multiphonon Absorption 232
VI. Infrared Absorption by Defects and Disorders
VIII. Infrared Dispersion by Plasmons

Part II CRITIQUES

Subpart 1 Metals

Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals
DAVID W. LYNCH AND W. R. HUNTER

I. Introduction
II. Anomalous Skin Effect
References
III. Copper (Cu)
References
IV. Gold (Au)
References
V. Iridium (Ir)
References
VI. Molybdenum (Mo)
References
VII. Nickel (Ni)
References
VIII. Osmium (Os)
References
IX. Platinum (Pt)
References
X. Rhodium (Rh)
References
XI. Silver (Ag)
References
XII. Tungsten (W)
References

The Optical Properties of Metallic Aluminum
D. Y. SMITH, E. SHILES, AND MITIO INOKUTI

I. General Features
II. Optical Measurements and Sample Conditions
III. Tabulated Data
References

Subpart 2 Semiconductors

Cadmium Telluride (CdTe)
EDWARD D. PALIK

References
Contents

<table>
<thead>
<tr>
<th>Subpart 3 Insulators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic Selenide (As$_2$Se$_3$)</td>
<td>623</td>
</tr>
<tr>
<td>D. J. TREACY</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>625</td>
</tr>
<tr>
<td>Arsenic Sulfide (As$_2$S$_3$)</td>
<td>641</td>
</tr>
<tr>
<td>D. J. TREACY</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>644</td>
</tr>
<tr>
<td>Cubic Carbon (Diamond)</td>
<td>665</td>
</tr>
<tr>
<td>DAVID F. EDWARDS AND H. R. PHILIPP</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>668</td>
</tr>
<tr>
<td>Lithium Fluoride (LiF)</td>
<td>675</td>
</tr>
<tr>
<td>EDWARD D. PALIK AND W. R. HUNTER</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>678</td>
</tr>
<tr>
<td>Lithium Niobate (LiNbO$_3$)</td>
<td>695</td>
</tr>
<tr>
<td>EDWARD D. PALIK</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>697</td>
</tr>
<tr>
<td>Potassium Chloride (KCl)</td>
<td>703</td>
</tr>
<tr>
<td>EDWARD D. PALIK</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>706</td>
</tr>
</tbody>
</table>
Contents

Silicon Dioxide (SiO₂), Type α (Crystalline) 719
H. R. PHILIPP
References 721

Silicon Dioxide (SiO₂) (Glass) 749
H. R. PHILIPP
References 752

Silicon Monoxide (SiO) (Noncrystalline) 765
H. R. PHILIPP
References 766

Silicon Nitride (Si₃N₄) (Noncrystalline) 771
H. R. PHILIPP
References 772

Sodium Chloride (NaCl) 775
J. E. ELDRIDGE AND EDWARD D. PALIK
References 779

Titanium Dioxide (TiO₂) (Rutile) 795
M. W. RIBARSKY
References 798