Jordi García-Ojalvo
José M. Sancho

Noise in Spatially Extended Systems

With 120 Illustrations

Springer
Contents

Preface vii
Acknowledgments ix

1 Introduction 1
1.1 Fluctuations in a Macroscopic World 1
1.1.1 Describing Stochastic Dynamics 3
1.1.2 Stochastic Partial Differential Equations 4
1.1.3 Experimental Setups 4
1.1.4 Numerical Experiments 10
1.1.5 Noise-Induced Phenomena 10
1.2 Transitions in Zero-Dimensional Systems 11
1.2.1 Internal Noise 12
1.2.2 External Noise 15
1.3 Phase Transitions in d-Dimensional Systems 23
1.3.1 Equilibrium Phase Transitions 23
1.3.2 Nonequilibrium Phase Transitions 32
1.3.3 Dynamics of Phase Transitions 37
1.4 Pattern Formation 39
1.4.1 Order-Parameter Equations 40
1.4.2 Pattern-Forming Instabilities 42
1.4.3 Amplitude Equations and Beyond 43
1.4.4 Real Patterns 44
1.5 Other Effects of Noise in Extended Media 45
1.5.1 Noise-Sustained Convective Structures 45
1.5.2 Spatial Stochastic Resonance 48

2 Fundamentals and Tools 53
 2.1 Introduction to Stochastic Partial Differential Equations 53
 2.1.1 Generalities and Modeling 54
 2.1.2 Stochastic Calculus in SPDEs 58
 2.1.3 Fokker–Planck Equation for Spatially Extended Systems 64
 2.1.4 Statistical Moments and Correlations 65
 2.2 Analytical Techniques 66
 2.2.1 Mean-Field Analysis and Beyond 66
 2.2.2 Small Noise Expansions 69
 2.2.3 Linear Stability Analysis 72
 2.2.4 Dynamic Renormalization Group Analysis 76
 2.3 Numerical Techniques 85
 2.3.1 Algorithms for Solving SPDEs 85
 2.3.2 Generation of Correlated Noises 92

3 Noise-Induced Phase Transitions 115
 3.1 Additive Noise .. 115
 3.1.1 Ginzburg–Landau Model with Colored Noise 116
 3.1.2 Noise-Induced Shift of the Transition Point 117
 3.1.3 Fokker–Planck Analysis 124
 3.1.4 Dynamic Renormalization Group Analysis 127
 3.2 Additive and Multiplicative Noise 130
 3.2.1 Ginzburg–Landau Model with Multiplicative Noise 131
 3.2.2 Pure Noise-Induced Phase Transitions 137
 3.2.3 Noise-Induced First-Order Phase Transitions 150
 3.3 Multiplicative Noise 153
 3.3.1 Multiplicative Noise Universality Class 153
 3.3.2 Disordering Transitions Induced by Pure Multiplicative Noise 155
 3.3.3 Numerical Simulation Results 157

4 Dynamics of Phase Transitions with Fluctuations 159
 4.1 Internal Multiplicative Noise 159
 4.1.1 Mesoscopic Derivation 160
 4.1.2 Application to Phase Separation Dynamics 167
 4.1.3 Extension to Nonconserved Order Parameter 172
 4.2 Noise-Induced Phase Separation 174
 4.2.1 External Fluctuations in Phase Separation 175
 4.2.2 Stability Analysis 176
 4.2.3 Phase Diagram 177