Molecular Catenanes, Rotaxanes and Knots

A Journey
Through the World
of Molecular Topology

Edited by
J.-P. Sauvage and
C. Dietrich-Buchecker

WILEY-VCH
Weinheim • New York • Chichester
Brisbane • Singapore • Toronto
Contents

1 **Chemical Topology – Statistical Musings**
 1.1 Catenanes
 1.2 Olefin Metathesis
 1.3 Knots
 References

2 **A Knot Theoretic Approach to Molecular Chirality**
 2.1 Topological Chirality of Knots and Links
 2.2 Topological Chirality of Embedded Graphs
 2.3 Topological Chirality of Molecular Knots and Links
 2.4 Topological Chirality of Molecular Cell Complexes
 2.5 Molecular Möbius Ladders and Related Molecules
 2.6 Using Automorphisms to Prove Intrinsic Chirality
 References

3 **Soft and Hard Molecule-Based Magnets with a Fully Interlocked Three-Dimensional Structure**
 3.1 Introduction
 3.2 Molecular Magnetism
 3.3 Magnetic Bricks
 3.4 A Game of Bricks and Pieces of Mortar
 3.5 Structure of Molecule-Based Magnets Containing Three Spin Carriers, with a Fully Interlocked Structure
 3.6 Magnetic Properties
 3.6.1 The Temperature Dependence of Magnetic Susceptibility
 3.6.2 Field Dependencies of the Magnetization
 3.7 Some Further Considerations
 3.8 A Few Words to Conclude
 References
4 Transition Metal-Incorporating Catenanes

4.1 Introduction .. 57
4.2 Interlocked Compounds Containing Metals 58
4.2.1 Metal-Containing Rotaxanes 59
4.2.2 Metal-Templated Synthesis of Catenanes 59
4.2.3 Organometallic Catenanes and Rotaxanes 60
4.2.4 Self-Assembly of a [2]Catenane Incorporating (en)Pd(II) Units . 62
4.2.4.1 Quantitative Self-Assembly of a Coordination Catenane 62
4.2.4.2 Mechanism of the Rapid Interconversion: Möbius Strip Mechanism 64
4.2.4.3 Irreversible Interlock of Molecular Rings 64
4.2.4.4 Electronic Effects in the Self-Assembly of Pd(II)-Linked Catenanes 66
4.2.5 Made-to-Order Assembling of Pd(II)-Linked Catenanes 68
4.2.5.1 Quantitative Formation of Catenanes from Rectangular Molecular Boxes 68
4.2.5.2 Selective Formation of Catenanes from Three Species-Eight Components 69
4.2.5.3 Scope and Limitations 71
4.3 Conclusion ... 74
References .. 75

5 Catenane and Rotaxane Motifs in Interpenetrating and Self-Penetrating Coordination Polymers 77

5.1 Introduction ... 77
5.1.1 Nets ... 77
5.1.2 Interpenetration of Nets 79
5.2 Interpenetrating 1D Polymers 80
5.3 Interpenetrating 2D Networks 83
5.3.1 Parallel Interpenetration of 2D Frameworks 83
5.3.1.1 Interpenetrating Pairs of Sheets 83
5.3.1.2 Parallel Interpenetration of more than Two Sheets 87
5.3.1.3 Parallel Interpenetration of Sheets Other than (6,3) and (4,4) 87
5.3.1.4 Parallel Interpenetration of 2D Nets to Give a 3D Interlocked Composite 87
5.3.2 Inclined Interpenetration of 2D Frameworks 88
5.3.2.1 More Than One Sheet Passing Through Any Ring 89
5.4 Interpenetrating 3D Networks 91
5.4.1 Interpenetrating 3-Connected 3D Nets 91
5.4.1.1 Interpenetrating (10,3)-a Nets 92
5.4.1.2 Interpenetrating (10,3)-b Nets 93
5.4.1.3 Interpenetrating (8,3)-c Nets 94
5.4.2 Interpenetrating 4-Connected 3D Nets 94
5.4.2.1 Interpenetrating Diamond-Like Nets 94
5.4.2.2 Interpenetrating Quartz-Like Nets 95
5.4.2.3 Interpenetrating PtS-Like Nets 95
6 Molecular Knots – From Early Attempts to High-Yield Template Syntheses

6.1 Introduction
6.1.1 Topology - From Arts to Mathematics
6.1.2 Biological Topology – DNA and Proteins
6.1.3 Historical Perspectives - Catenanes and Chemical Knots
6.1.4 The Various Routes Towards a Molecular Knot – Early Attempts
6.1.4.1 Approaches Involving Randomness
6.1.4.2 Attempts using Directed Syntheses
6.1.4.3 Attempts Based on Templated Synthesis
6.2 First Synthesis
6.2.1 Strategy
6.2.2 A Synthetic Molecular Trefoil Knot – First Results
6.3 Generalization and Improvements
6.3.1 Formation of Double-Stranded Helical Precursors with Polymethylene Linkers
6.3.2 A Dramatic Improvement – Use of 1,3-Phenylene Spacer Between the Coordinating Units
6.3.3 High-Yield Synthesis of a Dicopper(I) Trefoil Knot using Ring-Closing Metathesis Methodology
6.4 Trefoil Knots as Transition Metal Ligands – Specific Kinetic, Electrochemical, and Photochemical Properties
6.4.1 Topological Effect – The Polymethylene Bridged Complexes
6.4.2 Structural Effect – The Phenylene Bridged Trefoil Knot Cu$_2$(K-84)$_p^{2+}$
6.5 Resolution of a Molecular Knot into its Enantiomers
6.6 Conclusion

References

References
9.4.1 Experimental Results .. 231
9.4.2 Theoretical Interpretations ... 232
9.4.3 ‘Olympic’ Networks .. 233
9.5 Chains Constrained within Second Phases or at Interfaces 233
9.5.1 Essentially One-Dimensional Systems 233
9.5.1.1 Zeolites as Illustrative Systems 233
9.5.1.2 Simple Mixing of a Polymer and a Zeolite 234
9.5.1.3 Polymerizing Monomer within Zeolite Cavities 234
9.5.2 Essentially Two-Dimensional Systems 236
9.5.2.1 Some Important Examples .. 236
9.5.2.2 Polymers Between Two Surfaces 236
9.5.2.3 Polymeric Coatings .. 237
9.5.2.4 Elastomers Bound to Reinforcing Filler Particles 238
9.5.3 Essentially Three-Dimensional Systems 238
9.5.3.1 General Features .. 238
9.5.3.2 Tubules ... 238
9.5.3.3 Mesoporous Silica .. 238
9.5.3.4 Vycor Glass .. 239
9.5.3.5 Thermoporimetry .. 239
References ... 240

10.1 Introduction .. 247
10.2 Polycatenanes Linked by Topological Bonds 250
10.4 Catenated Cyclic Polymers .. 268
10.5 Conclusions and Perspective .. 272
References ... 274

11 Polyrotaxanes – Syntheses and Properties 277
11.1 Introduction .. 277
11.2 General Principles of Polyrotaxane Syntheses 278
11.2.1 Nomenclature .. 278
11.2.2 Structural Requirements – Size of the Cyclic Species and Blocking Groups 280
11.2.3 Driving Forces for Threading 280
11.2.3.1 Statistical Threading and Chemical Conversion 281
11.2.3.2 Threading Driven by Enthalpy 281
11.3 Syntheses of Polyrotaxanes .. 285
11.3.1 Statistical Approaches ... 285
11.3.2 Hydrophilic-Hydrophobic Interactions 288
11.3.3 Hydrogen Bonding ... 294
11.3.4 Metal Templates ... 303
11.3.5 Self-Assembly – π-π Stacking and Charge Transfer 304
11.3.6 Other Complexes 307
11.4 Characterization 309
11.5 Properties and Potential Applications 311
11.5.1 Phase Behavior – Glass Transitions and Melting Temperatures 312
11.5.2 Electronic Properties 313
11.5.3 Solubility 313
11.5.4 Solution Viscosity and Melt Viscosity 315
11.5.5 Mechanical Properties 315
11.6 Conclusions and Some Perspectives 316
References 318

12 Synthetic DNA Topology 323
12.1 Introduction 323
12.1.1 DNA Helicity Leads to Linked Topological Species 323
12.1.2 DNA Branching Topology 325
12.1.3 DNA as a Synthetic Material 326
12.2 Polyhedral Catenanes 328
12.2.1 A DNA Cube 328
12.2.2 A Solid-Support Methodology 329
12.2.3 A Truncated Octahedron 331
12.3 Knots 331
12.3.1 Knots, Catenanes and Nodes 331
12.3.2 DNA Knots 334
12.3.3 Topoisomerization of DNA Knots 335
12.3.4 An RNA Topoisomerase 335
12.4 Junctions, Antijunctions, and Mesojunctions 337
12.5 Borromean Rings 339
12.6 Topological Protection 341
12.7 DNA Double-Crossover Molecules 341
12.7.1 Motifs and Properties 341
12.7.2 Crossover Topology 344
12.7.3 Ligation of Double Crossover Molecules 344
12.7.4 Double-Crossover Molecules as a Route to Linear Catenanes and Rotaxanes 348
12.7.5 Two-Dimensional Arrays of Double-Crossover Molecules 349
12.8 Concluding Comments 351
12.8.1 Applications of Synthetic DNA Topology 351
12.8.2 Synthetic DNA Topology Leads to DNA Nanotechnology 353
References 354

Index 357