An Introduction to Atmospheric Physics

David G. Andrews
Contents

Preface

<table>
<thead>
<tr>
<th>1 Introduction</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The atmosphere as a physical system</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Atmospheric models</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Two simple atmospheric models</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 A simple radiative model</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 A simple model of the greenhouse effect</td>
<td>6</td>
</tr>
<tr>
<td>1.3.3 Global warming</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Some atmospheric observations</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1 The mean temperature and wind fields</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2 Gravity waves</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3 Rossby waves</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4 Ozone</td>
<td>16</td>
</tr>
<tr>
<td>1.5 Weather and climate</td>
<td>18</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>2 Atmospheric thermodynamics</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The ideal gas law</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Atmospheric composition</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Hydrostatic balance</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Entropy and potential temperature</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Parcel concepts</td>
<td>29</td>
</tr>
<tr>
<td>2.6 The available potential energy</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Moisture in the atmosphere</td>
<td>35</td>
</tr>
<tr>
<td>2.8 The saturated adiabatic lapse rate</td>
<td>40</td>
</tr>
<tr>
<td>2.9 The tephigram</td>
<td>43</td>
</tr>
<tr>
<td>2.10 Cloud formation</td>
<td>45</td>
</tr>
</tbody>
</table>

References

Problems

51
3 Atmospheric radiation

3.1 Basic physical concepts
 3.1.1 The Planck function
 3.1.2 Local thermodynamic equilibrium

3.2 The radiative-transfer equation
 3.2.1 Radiometric quantities
 3.2.2 Extinction and emission
 3.2.3 The diffuse approximation

3.3 Basic spectroscopy of molecules
 3.3.1 Vibrational and rotational states
 3.3.2 Line shapes

3.4 Transmittance

3.5 Absorption by atmospheric gases
 3.5.1 The solar spectrum
 3.5.2 Infra-red absorption
 3.5.3 Ultra-violet absorption

3.6 Heating rates
 3.6.1 Basic ideas
 3.6.2 Short-wave heating
 3.6.3 Long-wave heating and cooling
 3.6.4 Net radiative-heating rates

3.7 The greenhouse effect revisited

3.8 A simple model of scattering

References
Problems

4 Basic fluid dynamics

4.1 Mass conservation

4.2 The material derivative

4.3 An alternative form of the continuity equation

4.4 The equation of state for the atmosphere

4.5 The Navier-Stokes equation

4.6 Rotating frames of reference

4.7 Equations of motion in coordinate form
 4.7.1 Spherical coordinates
 4.7.2 Approximations to the spherical equations
 4.7.3 Tangent-plane geometry

4.8 Geostrophic and hydrostatic approximations
 4.8.1 The thermal windshear equations
 4.8.2 A circular vortex: gradient–wind balance

4.9 Pressure coordinates and geopotential

4.10 The thermodynamic energy equation

References
Problems
5 Further atmospheric fluid dynamics

5.1 Vorticity and potential vorticity 123
5.2 The Boussinesq approximation 126
5.2.1 Linearised equations and energetics 129
5.3 Quasi-geostrophic motion 130
5.4 Gravity waves 133
5.5 Rossby waves 137
5.6 Boundary layers 141
5.6.1 General considerations 141
5.6.2 The laminar Ekman layer 144
5.7 Instability 146
5.7.1 Baroclinic instability 147
5.7.2 Barotropic instability 151

References 152

Problems 153

6 Stratospheric chemistry

6.1 Thermodynamics of chemical reactions 157
6.2 Chemical kinetics 159
6.3 Bimolecular reactions 161
6.4 Photodissociation 164
6.5 Stratospheric ozone 165
6.5.1 Chapman chemistry 165
6.5.2 Catalytic cycles 167
6.6 The transport of chemicals 167
6.7 The Antarctic ozone hole 171

References 174

Problems 174

7 Atmospheric remote sounding

7.1 Atmospheric observations 177
7.2 Atmospheric remote sounding from space 178
7.2.1 Thermal emission measurements 179
7.2.2 Backscatter measurements 186
7.3 Atmospheric remote sounding from the ground 188
7.3.1 The Dobson ozone spectrophotometer 188
7.3.2 Radars 190
7.3.3 Lidars 195

References 196

Problems 197

8 Atmospheric modelling

8.1 The hierarchy of models 203
8.2 Numerical methods 205
8.3 Uses of complex numerical models 207
8.4 Laboratory models 209
8.5 Final remarks 211
 8.5.1 The height of the tropopause 211
 8.5.2 The middle-atmosphere temperature field 212
 8.5.3 The Antarctic ozone hole 212
References 213

Appendix A Useful physical constants 215

Appendix B Derivation of the equations of motion in spherical coordinates 217

Appendix C Solutions and hints for selected problems 219

Bibliography 223
Index 227