CONTENTS

3.3 Squeezed States 60
 3.3.1 Properties of Quadrature Amplitude Squeezed States 60
 3.3.2 Generation of Quadrature Amplitude Squeezed States 61
 3.3.3 Properties of Number-Phase Squeezed States 63
 3.3.4 Generation of Number-Phase Squeezed States 65

3.4 Correlated Twin Photons and Quantum Entanglement 67
 3.4.1 Generation of Arbitrary Quantum States by Projective Measurements 68
 3.4.2 Nonlocal Quantum Entanglement 70

3.5 Probability Distribution Functions for a Density Operator 71

References 74

4 Coherence of the Electromagnetic Fields 76
 4.1 Photodetection 76
 4.2 Young’s Interference Experiment and First-Order Coherence 77
 4.3 Hanbury–Brown–Twiss Experiment and Second-Order Coherence 81
 4.4 Photon Counting 85
 4.4.1 Classical Theory of Photon Count Distribution 86
 4.4.2 Quantum Theory of Photon Count Distribution 88
 4.5 Phase Operator of the Quantized Electromagnetic Field 89
 4.6 Quantum Limits of Optical Interferometry 92
 4.6.1 Standard Quantum Limits of Optical Interferometry 92
 4.6.2 Squeezed State Interferometer 93
 4.6.3 Photon Number Eigenstate Interferometer 96
 4.6.4 Photonic de Broglie Wave Interferometer 97

References 100

5 Quantum States of Atoms 101
 5.1 Angular Momentum Algebra 102
 5.1.1 Quantization of Angular Momentum 102
 5.1.2 Angular Momentum Operators and Eigenstates 103
 5.2 Assembly of Two-Level Atoms 105
 5.2.1 Pauli Spin Operators 105
 5.2.2 Collective Angular Momentum Operators 106
 5.2.3 Angular Momentum Eigenstates (Dicke States) 108
 5.2.4 Coherent Atomic States (Bloch States) 109

References 113
6 Interaction between Atoms and Fields

6.1 Atom-Field Interaction in the Length Gauge 114
6.2 Jaynes–Cummings Hamiltonian 118
6.3 Two-Level Atom and Single-Mode Photon Number State 119
 6.3.1 Vacuum Rabi Oscillation 119
 6.3.2 Normal Mode Splitting 121
6.4 N Two-Level Atoms and a Single-Mode Photon Number State 122
 6.4.1 Collective Rabi Oscillation and Normal Mode Splitting 122
 6.4.2 Dressed Fermions and Dressed Bosons 124
 6.4.3 Atomic Cavity Quantum Electrodynamics (QED) 125
 6.4.4 Mollow’s Triplet 127
 6.4.5 Radiation Trapped State 128
6.5 Cummings Collapse and Revival 128
6.6 Two-Level Atoms with a Continuum of Radiation Fields 131
6.7 Superradiance 134
References 136

7 Mathematical Methods for System-Reservoir Interaction

7.1 Noise Operator Method 139
 7.1.1 Field Damping by Field Reservoirs 139
 7.1.2 Einstein Relation between Drift and Diffusion Coefficients 144
7.2 Density Operator Method 145
 7.2.1 Derivation of the Master Equation 145
 7.2.2 Field Damping by Atomic Reservoirs 146
 7.2.3 Atom Damping by Field Reservoirs 150
 7.2.4 Field Damping by Field Reservoirs 151
7.3 The Fokker-Planck Equation 152
 7.3.1 Glauber-Sudarshan P Representation 152
 7.3.2 Stochastic Differential Equations 153
7.4 Quantum Regression Theorem 154
References 161

8 Stochastic Wavefunction Methods

8.1 Monte Carlo Wavefunction Approach 163
 8.1.1 Description and Equivalence to Master Equation 164
 8.1.2 Two-Time Correlation Functions 166
 8.1.3 Two-Level Atom Driven by a Laser Field 167
 8.1.4 Single-Mode Cavity Driven by a Thermal Field 168
CONTENTS

8.2 Quantum State Diffusion Model 171
References 174

9 Quantum Nondemolition Measurements 175
 9.1 QND Measurement of Photon Number 175
 9.1.1 Heisenberg Picture 175
 9.1.2 Schrödinger Picture 178
 9.2 Experimental QND Measurements 180
 9.3 QND Measurement of Quadrature Amplitudes 182
References 184

10 Semiconductor Bloch Equations 186
 10.1 Field Theory of Semiconductors 186
 10.2 Semiconductor Bloch Equations 194
 10.2.1 Semiconductor Bloch Equations in the Non-interacting Limit 195
 10.2.2 Semiconductor Bloch Equations with Interactions 196
 10.3 Excitons 197
 10.4 Nonlinear Response of Excitons 198
References 200

11 Excitons and Polaritons 202
 11.1 Non-interacting Excitons 202
 11.2 Bulk Exciton Polaritons 203
 11.3 Quantum-Well Excitons and Cavity Polaritons 206
 11.4 Excitons as Bosons 211
 11.4.1 Bosonization 211
 11.4.2 Bose Condensation of Excitons 212
 11.4.3 Stimulated Scattering of Excitons 213
 11.5 Stimulated Scattering Experiment With Excitons 216
References 219

12 Coulomb Blockade and Squeezing 220
 12.1 Coulomb Blockade of Tunneling 220
 12.2 Macroscopic Coulomb Blockade of Electron Injection 224
 12.3 AC-Voltage-Driven Mesoscopic p-i-n Junctions 228
References 234
13 Current Noise in Mesoscopic and Macroscopic Conductors 235

13.1 Suppression of Electrical Current Noise in Dissipative Conductors 236

13.1.1 Equilibrium and Nonequilibrium Transport Noise in Mesoscopic Conductors 236

13.1.2 Suppression of Nonequilibrium Partition Noise by Inelastic Scattering 239

13.2 Quantum Interference in Electron Collision 246

13.3 Negative Correlation in Electron Partition 250

References 252

14 Nonequilibrium Green’s Function Formalism 253

14.1 Green’s Function and Self-Energy 253

14.2 Correlation and Scattering Functions 256

14.3 Current Flow 257

14.3.1 Noninteracting Transport 257

14.3.2 Strongly Interacting Transport 258

14.3.3 Conductance through a Single Site 262

References 264

15 Quantum Statistical Properties of a Laser 265

15.1 Density Operator Master Equation 266

15.1.1 Derivation of the Master Equation 266

15.1.2 Fast Dephasing Case 269

15.1.3 Lifetime Broadened Laser System 269

15.1.4 Threshold Characteristics 271

15.1.5 Photon Statistics 273

15.1.6 Spectral Linewidth 276

15.2 Fokker-Planck Equation 278

15.3 Langevin Equation 280

15.3.1 Derivation of the Langevin Equation 280

15.3.2 Linearization of the Langevin Equations 281

15.3.3 Quantum Noise at Well Above Threshold 283

15.4 Sub-Poissonian Lasers 284

15.4.1 Standard Quantum Limit of the Output Field 285

15.4.2 Photon Number Noise and Phase Noise of Pump-Noise-Suppressed Lasers 287

15.4.3 Commutator Bracket Conservation 288
CONTENTS

15.5 Squeezing in Semiconductor Lasers 289
15.6 Observation of Mode Partition Noise 294
References 297

Index 299