Self-Assembled InGaAs/GaAs Quantum Dots

SEMICONDUCTORS AND SEMIMETALS

Volume 60

Volume Editor

MITSURU SUGAWARA

OPTICAL SEMICONDUCTOR DEVICE LABORATORY
FUJITSU LABORATORIES LTD.
ATSUGI, JAPAN

ACADEMIC PRESS
San Diego London Boston
New York Sydney Tokyo Toronto
Contents

PREFACE xi
LIST OF CONTRIBUTORS xv

Chapter 1 Theoretical Bases of the Optical Properties of Semiconductor Quantum Nano-Structures

Mitsuru Sugawara

I. INTRODUCTION 1
II. ELECTRONIC STATES OF SEMICONDUCTOR QUANTUM NANO-STRUCTURES 3
III. INTERBAND OPTICAL TRANSITION 11
 1. Linear and Nonlinear Optical Susceptibility 12
 2. Spontaneous Emission of Photons 21
 3. Rate Equations for Laser Operations 27
IV. EXCITON OPTICAL PROPERTIES 30
 1. State Vectors 32
 2. Effective-Mass Equations 36
 3. Exciton–Photon Interactions 43
 4. Optical Absorption Spectra 47
 5. Spontaneous Emission of Photons in Quantum Wells and Mesoscopic Quantum Disks 55
 7. The Coulomb Effect on Optical Gain Spectra 77
V. QUANTUM-DOT LASERS 83
 1. The Effect of Carrier Relaxation Dynamics on Laser Performance 86
 2. Effect of Homogeneous Broadening of Optical Gain on Lasing Emission Spectra 95
 3. Bi-Exciton Spontaneous Emission and Lasing 97
VI. SUMMARY 107
APPENDIX 107
REFERENCES 112
Chapter 2 Molecular Beam Epitaxial Growth of Self-Assembled InAs/GaAs Quantum Dots

Yoshiaki Nakata, Yoshihiro Sugiyama, and Mitsuru Sugawara

I. INTRODUCTION .. 117
II. THE STRANSKI-KRASTANOW GROWTH MODE 119
 1. Energy-Balance Model for Island Formation 119
 2. InAs Island Growth .. 121
 3. Multiple-Layer Growth and Perpendicular Alignment of Islands 125
 4. In-Plane Alignment of Islands 130
III. CLOSELY STACKED InAs/GaAs QUANTUM DOTS 132
 1. Close Stacking of InAs Islands 133
 2. Photoluminescence Properties 137
 3. Zero-Dimensional Exciton Confinement Evaluated by Diamagnetic Shifts 140
IV. COLUMNAR InAs/GaAs QUANTUM DOTS 143
V. SUMMARY ... 150
ACKNOWLEDGMENTS .. 151
REFERENCES ... 152

Chapter 3 Metalorganic Vapor Phase Epitaxial Growth of Self-Assembled InGaAs/GaAs Quantum Dots Emitting at 1.3 \mu m

Kohki Mukai, Mitsuru Sugawara, Mitsuru Egawa, and Nobuyuki Ohtsuka

I. INTRODUCTION .. 155
II. ATOMIC LAYER EPITAXIAL GROWTH 157
III. ALTERNATE SUPPLY GROWTH OF InGaAs DOTS BY In-As-Ga-As SEQUENCE 160
IV. ALTERNATE SUPPLY GROWTH OF InGaAs DOTS BY THE In-Ga-As SEQUENCE 166
 1. Two Types of ALS Dot 168
 2. Multiple-Layer Growth 172
V. THE GROWTH PROCESS .. 176
VI. SUMMARY ... 180
REFERENCES ... 181

Chapter 4 Optical Characterization of Quantum Dots

Kohki Mukai and Mitsuru Sugawara

I. INTRODUCTION .. 183
II. LIGHT EMISSION FROM DISCRETE ENERGY STATES 185
 1. Photoluminescence, Photoluminescence Excitation, and Electroluminescence Spectra 185
 2. Wafer Mapping .. 190
 3. Microprobe Photoluminescence 192
III. CONTROLLABILITY OF QUANTUM CONFINEMENT 196
 1. Two Methods of Controlling Quantized Energies 196
 2. Magneto-Optical Spectroscopy 200
IV. RADIATIVE EMISSION EFFICIENCY 201
V. SUMMARY ... 207
REFERENCES ... 208
Chapter 5 The Photon Bottleneck Effect in Quantum Dots
Kohki Mukai and Mitsuru Sugawara

I. INTRODUCTION ... 209
II. A MODEL OF THE CARRIER RELAXATION PROCESS IN QUANTUM DOTS 211
III. EXPERIMENTS ON LIGHT EMISSION AND CARRIER RELAXATION IN QUANTUM-DOT DISCRETE ENERGY LEVELS ... 214
 1. Electroluminescence Spectra 215
 2. Time-Resolved Photoluminescence 217
 3. Simulation of Electroluminescence Spectra 225
IV. INFLUENCE OF THERMAL TREATMENT 229
 1. Change in Emission Spectra after Annealing 229
 2. Competition between Carrier Relaxation and Recombination 231
V. SIMULATION OF LASER PERFORMANCE INCLUDING THE AUGER RELAXATION PROCESS ... 235
VI. SUMMARY .. 237
REFERENCES ... 238

Chapter 6 Self-Assembled Quantum Dot Lasers
Hajime Shoji

I. INTRODUCTION ... 241
II. FUNDAMENTAL PROPERTIES OF QUANTUM-DOT LASERS 243
 1. Gain Characteristics 244
 2. Threshold Current 246
 3. Dynamic Characteristics 248
III. FABRICATION OF SELF-ASSEMBLED QUANTUM-DOT LASERS 249
 1. Fabrication ... 250
 2. Device Characteristics 255
 3. Limiting Factors of Laser Performance 267
IV. KEY TECHNOLOGIES FOR THE NEXT ERA 269
 1. Closely Stacked Quantum-Dot Lasers 270
 2. Columnar Quantum-Dot Lasers 273
 3. Long-Wavelength Quantum-Dot Lasers 276
 4. Quantum-Dot Vertical-Cavity Surface-Emitting Lasers 279
V. CONCLUSION .. 282
ACKNOWLEDGMENTS .. 283
REFERENCES ... 283

Chapter 7 Applications of Quantum Dot to Optical Devices
Hiroshi Ishikawa

I. INTRODUCTION ... 287
II. PROPERTIES OF QUANTUM DOTS 288
 1. The Quantum Dot as a Two-Level System 288
 2. Attractive Features of Quantum Dots for Device Application .. 294
III. QUANTUM DOTS FOR VERY HIGH SPEED LIGHT MODULATION 295
 1. The Need for High-Speed, Low-Wavelength-Chirp Light Sources . 295
CONTENTS

2. Direct Modulation of Quantum-Dot Lasers .. 298
3. The Quantum-Dot Intensity Modulator .. 302

IV. QUANTUM DOTS AS A NONLINEAR MEDIUM .. 303
1. The Need for Large Nonlinearity with a Large Bandwidth 303
2. Analysis of $\chi^{(3)}$.. 306
3. Discussion .. 311

V. PERSISTENT HOLE BURNING MEMORY .. 314
1. Persistent Spectral Hole Burning Memory Using Quantum Dots 314
2. Experimental Results .. 316
3. Discussion .. 319

VI. SUMMARY AND PERSPECTIVES ON QUANTUM-DOT OPTICAL DEVICES 319
1. Trends in Optoelectronics ... 320
2. Uses for Quantum-Dot Optical Devices ... 321
ACKNOWLEDGMENT ... 321
REFERENCES .. 321

Chapter 8 The Latest News

Mitsuru Sugawara, Kohki Mukai, Hiroshi Ishikawa, Koji Otsubo, and Yoshiaki Nakata

I. LASING WITH LOW-THRESHOLD CURRENT AND HIGH-OUTPUT POWER FROM COLUMNAR-SHAPED QUANTUM DOTS ... 325

II. EFFECT OF HOMOGENEOUS BROADENING OF SINGLE-DOT OPTICAL GAIN ON LASING SPECTRA ... 328

III. QUANTUM DOTS ON INGAAS SUBSTRATES .. 331

IV. QUANTUM DOTS EMITTING AT 1.3 µM GROWN BY LOW GROWTH RATES AND WITH AN INGAAS CAP ... 333

V. REDUCED-TEMPERATURE-INDUCED VARIATION OF SPONTANEOUS EMISSION IN ALTERNATE SUPPLY (ALS) QUANTUM DOTS COVERED BY In$_{0.3}$Ga$_{0.7}$As .. 336

REFERENCES .. 337