Thermodynamics of Atmospheres and Oceans

Judith A. Curry and Peter J. Webster
PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES
DEPARTMENT OF AEROSPACE ENGINEERING
UNIVERSITY OF COLORADO
BOULDER, COLORADO
USA
Contents

Preface x
Acknowledgements xiv
Publisher’s Credits xv

Part I Basic Concepts

Chapter 1 Composition, Structure, and State

1.1 Composition of the Atmosphere 3
1.2 Composition of the Ocean 5
1.3 Pressure 6
1.4 Density 8
1.5 Temperature 10
1.6 Kinetic-Molecular Model of the Ideal Gas 13
1.7 Equation of State for Air 18
1.8 Equation of State for Seawater 21
1.9 Compressibility and Expansion Coefficients 23
1.10 Hydrostatic Equilibrium 26
 Notes
 Problems

Chapter 2 First and Second Laws of Thermodynamics

2.1 Work 35
2.2 Heat 38
2.3 First Law 39
2.4 Applications of the First Law to Ideal Gases 44
2.5 Entropy 48
2.6 Second Law 52
2.7 Equilibrium and the Combined First and Second Laws 55
2.8 Calculation of Thermodynamic Relations 57
2.9 Heat Capacity 59
2.10 Dry Adiabatic Processes in the Atmosphere 65
2.11 Adiabatic Processes in the Ocean 68
 Notes 71
 Problems 71
Chapter 3 Transfer Processes

3.1 Time-dependent Thermodynamics 74
3.2 Radiant Energy 76
3.3 Radiative Transfer 81
3.4 Diffusive Transfer Processes 85
3.5 Turbulence and Turbulent Transport 89
3.6 Time-dependent Equations for the Ocean and Atmosphere 92
 Notes 94
 Problems 94

Chapter 4 Thermodynamics of Water

4.1 Molecular Structure and Properties of Water 96
4.2 Thermodynamic Degrees of Freedom 100
4.3 Phase Equilibria 104
4.4 Atmospheric Humidity Variables 112
4.5 Colligative Properties of Water Solutions 114
4.6 Simple Eutectics 123
 Notes 126
 Problems 127

Chapter 5 Nucleation and Diffusional Growth

5.1 Surface Tension 129
5.2 Nucleation of the Liquid Phase 131
5.3 Nucleation of the Ice Phase 140
5.4 Diffusional Growth of Cloud Drops 142
5.5 Ice Crystal Morphology and Growth 149
5.6 Formation of the Initial Sea Ice Cover 151
5.7 Formation of Sea Ice Transition and Columnar Zones 154
 Notes 156
 Problems 156

Part II Applications

Chapter 6 Moist Thermodynamic Processes in the Atmosphere

6.1 Combined First and Second Laws 160
6.2 Isobaric Cooling 163
6.3 Cooling and Moistening by Evaporation of Water 168
Chapter 7 Static Stability of the Atmosphere and Ocean

7.1 Stability Criteria 191
7.2 Stability of a Saturated Atmosphere 196
7.3 Processes Producing Changes in Stability 200
 Notes 204
 Problems 204

Chapter 8 Cloud Characteristics and Processes

8.1 Cloud Classification and Characteristics 207
8.2 Precipitation Processes 209
8.3 Radiative Transfer in a Cloudy Atmosphere 220
8.4 Fogs, Stratus Clouds, and Stratocumulus Clouds 230
8.5 Cumuliform Clouds 236
8.6 Parameterization of Cloud Microphysical Processes 241
 Notes 244
 Problems 245

Chapter 9 Ocean Surface Exchanges of Heat and Freshwater

9.1 Ocean Surface Energy Budget 247
9.2 Ocean Surface Salinity Budget 257
9.3 Ocean Surface Buoyancy Flux 260
9.4 Air Mass and Upper Water Mass Modification 262
 Notes 265
 Problems 265

Chapter 10 Sea Ice, Snow and Glaciers

10.1 Large-scale Morphology of Sea Ice 267
10.2 Ice Thickness Distribution 271
10.3 Evolution of the Salinity Profile in Sea Ice 273
Contents

10.4 Thermal Properties of Sea Ice 276
10.5 Optical Properties of Sea Ice and Snow 279
10.6 Surface Energy Balance over Snow and Sea Ice 282
10.7 Growth and Decay of Sea Ice 285
10.8 Metamorphosis of Surface Snow 291
10.9 Glaciers 293
 Notes 296
 Problems 297

Chapter 11 Thermohaline Processes in the Ocean

11.1 Radiative Transfer in the Ocean 299
11.2 Skin Temperature and the Diffusive Surface Layer 301
11.3 Surface Density Changes and the Ocean Mixed Layer 302
11.4 Instability and Mixing in the Ocean Interior 309
11.5 Oceanic Convection and Deep Water Formation 318
11.6 Global Thermohaline Circulations 324
 Notes 328
 Problems 329

Part III Special Topics

Chapter 12 Global Energy and Entropy Balances

12.1 Planetary Radiation Balance 331
12.2 Global Heat Engine 337
12.3 Entropy and Climate 342
12.4 Global Hydrologic Cycle 347
 Notes 349
 Problems 349

Chapter 13 Thermodynamic Feedbacks in the Climate System

13.1 Introduction to Feedback and Control Systems 352
13.2 Radiation Climate Sensitivity and Feedbacks 354
13.3 Water Vapor Feedback 358
13.4 Cloud-radiation Feedback 366
13.5 Snow/Ice-albedo Feedback 374
13.6 Thermodynamic Control of the Tropical Ocean Warm Pool 378
13.7 High-latitude Ocean Feedbacks 383
 Notes 385
Chapter 14 Planetary Atmospheres

14.1 Atmospheric Composition and Mass 386
14.2 Vertical Structure of Planetary Atmospheres 393
14.3 Planetary Energy Balance 403
14.4 Water on the Terrestrial Planets 411
14.5 Cloud Physics of the Terrestrial Planets 417
14.6 Cloud Physics of the Jovian Planets 418
14.7 Surface Ice 422
 Notes 424
 Problems 424

Appendices

A. Notation 425
B. Physical Constants 437
C. Units and Their SI Equivalents 439
D. Atmospheric Humidity Tables 440
E. Atmospheric Thermodynamic Chart 442
F. Properties of Seawater 444

Answers to Selected Problems 446
References 450
Index 456